ﻻ يوجد ملخص باللغة العربية
Reports of weak local minima in the magnetoresistance at $ u=2+3/5$, $2+3/7$, $2+4/9$, $2+5/9$, $2+5/7$, and $2+5/8$ in the second Landau level of the electron gas in GaAs/AlGaAs left open the possibility of fractional quantum Hall states at these filling factors. In a high quality sample we found that the magnetoresistance exhibits peculiar features near these filling factors of interest. These features, however, cannot be associated with fractional quantum Hall states; instead they originate from magnetoresistive fingerprints of the electronic bubble phases. We found only two exceptions: at $ u=2+2/7$ and $2+5/7$ there is evidence for incipient fractional quantum Hall states at intermediate temperatures. As the temperature is lowered, these fractional quantum Hall states collapse due to a phase competition with bubble phases.
In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor $ u=5/2$. At this f
The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is studied using diffusion quantum Monte Carlo simulations. Calculations of the electron-hole correlation energy, pair-correlation function, and the e
We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her
The coupling of optical and electronic degrees of freedom together with quantum confinement in low-dimensional electron systems is particularly interesting for achieving exotic functionalities in strongly correlated oxide electronics. Recently, high