ﻻ يوجد ملخص باللغة العربية
We show that the Nielsen-Ninomiya no-go theorem still holds on Floquet lattice: there is an equal number of right-handed and left-handed Weyl points in 3D Floquet lattice. However, in the adiabatic limit, where the time evolution of low-energy subspace is decoupled from the high-energy subspace, we show that the bulk dynamics in the low-energy subspace can be described by Floquet bands with purely left/right-handed Weyl points, despite the no-go theorem. For the adiabatic evolution of two bands, we show that the difference of the number of right-handed and left-handed Weyl points equals twice the winding number of the Floquet operator of the low-energy subspace over the Brillouin zone, thus guaranteeing the number of Weyl points to be even. Based on this observation, we propose to realize purely left/right-handed Weyl points in the adiabatic limit using a Hamiltonian obtained through dimensional reduction of four-dimensional quantum Hall system. We address the breakdown of the adiabatic limit on the surface due to the presence of gapless boundary states. This effect induces a circular motion of a wave packet in an applied magnetic field, travelling alternatively in the low-energy and high-energy subspace of the system.
Recent experiments showed that the surface of a three dimensional topological insulator develops gaps in the Floquet-Bloch band spectrum when illuminated with a circularly polarized laser. These Floquet-Bloch bands are characterized by non-trivial Ch
Skyrmions, spin spirals, and other chiral magnetization structures developing in materials with intrinsic Dzyaloshinsky-Moriya Interaction display unique properties that have been the subject of intense research in thin-film geometries. Here we study
We show that the exciton optical selection rule in gapped chiral fermion systems is governed by their winding number $w$, a topological quantity of the Bloch bands. Specifically, in a $C_N$-invariant chiral fermion system, the angular momentum of bri
We study the possibility of triply-degenerate points (TPs) that can be stabilized in spinless crystalline systems. Based on an exhaustive search over all 230 space groups, we find that the spinless TPs can exist at both high-symmetry points and high-
We demonstrate that a three dimensional time-periodically driven lattice system can exhibit a second-order chiral skin effect and describe its interplay with Weyl physics. This Floquet skin-effect manifests itself, when considering open rather than p