ﻻ يوجد ملخص باللغة العربية
This paper investigates the transmission energy minimization problem for the two-user downlink with strictly heterogeneous latency constraints. To cope with the latency constraints and to explicitly specify the trade-off between blocklength (latency) and reliability the normal approximation of the capacity of finite blocklength codes (FBCs) is adopted, in contrast to the classical Shannon capacity formula. We first consider the non-orthogonal multiple access (NOMA) based transmission scheme. However, due to heterogeneous latency constraints and channel conditions at receivers, the conventional successive interference cancellation may be infeasible. We thus study the problem by considering heterogeneous receiver conditions under different interference mitigation schemes and solve the corresponding NOMA design problems. It is shown that, though the energy function is not convex and does not have closed form expression, the studied NOMA problems can be globally solved semi-analytically and with low complexity. Moreover, we propose a hybrid transmission scheme that combines the time division multiple access (TDMA) and NOMA. Specifically, the hybrid scheme can judiciously perform bit and time allocation and take TDMA and NOMA as two special instances. To handle the more challenging hybrid design problem, we propose a concave approximation of the FBC rate/capacity formula, by which we obtain computationally efficient and high-quality solutions. Simulation results show that the hybrid scheme can achieve considerable transmission energy saving compared with both pure NOMA and TDMA schemes.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffi
This paper focuses on energy-efficient coordinated multi-point (CoMP) downlink in multi-antenna multi-cell wireless communications systems. We provide an overview of transmit beamforming designs for various energy efficiency (EE) metrics including ma
In this paper, a comprehensive study of the the downlink performance in a heterogeneous cellular network (or hetnet) is conducted. A general hetnet model is considered consisting of an arbitrary number of open-access and closed-access tier of base st
Rate-Splitting Multiple Access (RSMA) is an emerging flexible and powerful multiple access for downlink multiantenna networks. In this paper, we introduce the concept of RSMA into short-packet downlink communications. We design optimal linear precode
The next generation Internet of Things (IoT) exhibits a unique feature that IoT devices have different energy profiles and quality of service (QoS) requirements. In this paper, two energy and spectrally efficient transmission strategies, namely wir