ﻻ يوجد ملخص باللغة العربية
This paper focuses on energy-efficient coordinated multi-point (CoMP) downlink in multi-antenna multi-cell wireless communications systems. We provide an overview of transmit beamforming designs for various energy efficiency (EE) metrics including maximizing the overall network EE, sum weighted EE and fairness EE. Generally, an EE optimization problem is a nonconvex program for which finding the globally optimal solutions requires high computational effort. Consequently, several low-complexity suboptimal approaches have been proposed. Here we sum up the main concepts of the recently proposed algorithms based on the state-of-the-art successive convex approximation (SCA) framework. Moreover, we discuss the application to the newly posted EE problems including new EE metrics and power consumption models. Furthermore, distributed implementation developed based on alternating direction method of multipliers (ADMM) for the provided solutions is also discussed. For the sake of completeness, we provide numerical comparison of the SCA based approaches and the conventional solutions developed based on parametric transformations (PTs). We also demonstrate the differences and roles of different EE objectives and power consumption models.
This paper investigates the transmission energy minimization problem for the two-user downlink with strictly heterogeneous latency constraints. To cope with the latency constraints and to explicitly specify the trade-off between blocklength (latency)
This paper investigates the application of intelligent reflecting surface (IRS) in an underlay cognitive radio network (CRN), where a multi-antenna cognitive base station (CBS) utilizes spectrum assigned to the primary user (PU) to communicate with a
In this paper, the design of robust linear precoders for the massive multi-input multi-output (MIMO) downlink with imperfect channel state information (CSI) is investigated. The imperfect CSI for each UE obtained at the BS is modeled as statistical C
This paper investigates an energy-efficient non-orthogonal transmission design problem for two downlink receivers that have strict reliability and finite blocklength (latency) constraints. The Shannon capacity formula widely used in traditional desig
For downlink multi-user non-orthogonal multiple access (NOMA) systems with successive interference cancellation (SIC) receivers, and a base-station not possessing the instantaneous channel gains, the fundamental relationship between the target rates