ﻻ يوجد ملخص باللغة العربية
While perfect crystals may exhibit a purely elastic response to shear all the way to yielding, the response of amorphous solids is punctuated by plastic events. The prevalence of this plasticity depends on the number of particles $N$ of the system, with the average strain interval before the first plastic event, $overline{Deltagamma}$, scaling like $N^alpha$ with $alpha$ negative: larger samples are more susceptible to plasticity due to more numerous disorder-induced soft spots. In this paper we examine this scaling relation in ultra-stable glasses prepared with the Swap Monte Carlo algorithm, with regard to the possibility of protocol-dependent scaling exponent, which would also imply a protocol dependence in the distribution of local yield stresses in the glass. We show that, while a superficial analysis seems to corroborate this hypothesis, this is only a pre-asymptotic effect and in fact our data can be well explained by a simple model wherein such protocol dependence is absent.
The universal anomalous vibrational and thermal properties of amorphous solids are believed to be related to the local variations of the elasticity. Recently it has been shown that the vibrational properties are sensitive to the glasss stability. Her
It is known by now that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus which exists, all the higher order coefficients do not exist in the thermodynamic limit. Here we show that the same p
The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, inclu
Low-temperature properties of crystalline solids can be understood using harmonic perturbations around a perfect lattice, as in Debyes theory. Low-temperature properties of amorphous solids, however, strongly depart from such descriptions, displaying
When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of