ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic simulations of the extragalactic sky seen by eROSITA. I. Pre-launch selection functions from Monte-Carlo simulations

55   0   0.0 ( 0 )
 نشر من قبل Nicolas Clerc
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of galaxy clusters provide stringent constraints on models of structure formation. Provided that selection effects are under control, large X-ray surveys are well suited to derive cosmological parameters, in particular those governing the dark energy equation of state. We forecast the capabilities of the all-sky eROSITA (the extended ROentgen Survey with an Imaging Telescope Array) survey to be achieved by the early 2020s. We bring special attention to modeling the entire chain from photon emission to source detection and cataloguing. The selection function of galaxy clusters for the upcoming eROSITA mission is investigated by means of extensive and dedicated Monte-Carlo simulations. Employing a combination of accurate instrument characterization and of state-of-the-art source detection technique, we determine a cluster detection efficiency based on the cluster fluxes and sizes. Using this eROSITA cluster selection function, we find that eROSITA will detect a total of $sim 10^5$ clusters in the extra-galactic sky. This number of clusters will allow eROSITA to put stringent constraints on cosmological models. We show that incomplete assumptions on selection effects, such as neglecting the distribution of cluster sizes, induce a bias in the derived value of cosmological parameters. Synthetic simulations of the eROSITA sky capture the essential characteristics impacting the next-generation galaxy cluster surveys and they highlight parameters requiring tight monitoring in order to avoid biases in cosmological analyses.

قيم البحث

اقرأ أيضاً

Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experimentally relevant Ising and XY univ ersality classes. Several surface universality classes of the confining surfaces are considered, some of which are relevant for recent experiments. A novel approach introduced previously EPL 80, 60009 (2007), based inter alia on an integration scheme of free energy differences, is utilized to compute the universal scaling functions of the critical Casimir forces in the critical range of temperatures above and below the bulk critical temperature. The resulting predictions are compared with corresponding experimental data for wetting films of fluids and with available theoretical results.
184 - G. Vernizzi , H. Orland , A. Zee 2004
In this paper we consider the problem of RNA folding with pseudoknots. We use a graphical representation in which the secondary structures are described by planar diagrams. Pseudoknots are identified as non-planar diagrams. We analyze the non-planar topologies of RNA structures and propose a classification of RNA pseudoknots according to the minimal genus of the surface on which the RNA structure can be embedded. This classification provides a simple and natural way to tackle the problem of RNA folding prediction in presence of pseudoknots. Based on that approach, we describe a Monte Carlo algorithm for the prediction of pseudoknots in an RNA molecule.
We present a new pipeline for the efficient generation of synthetic observations of the extragalactic microwave sky, tailored to large ground-based CMB experiments such as the Simons Observatory, Advanced ACTPol, SPT-3G, and CMB-S4. Such simulated ob servations are a key technical challenge in cosmology because of the dynamic range and accuracy required. The first part of the pipeline generates a random cosmological realization in the form of a dark matter halo catalog and matter displacement field, as seen from a given position. The halo catalog and displacement field are modeled with ellipsoidal collapse dynamics and Lagrangian perturbation theory, respectively. In the second part, the cosmological realization is converted into a set of intensity maps over the range 10 - 10^3 GHz using models based on existing observations and hydrodynamical simulations. These maps include infrared emission from dusty star forming galaxies (CIB), Comptonization of CMB photons by hot gas in groups and clusters through the thermal Sunyaev-Zeldovich effect (tSZ), Doppler boosting by Thomson scattering of the CMB by bulk flows through the kinetic Sunyaev-Zeldovich effect (kSZ), and weak gravitational lensing of primary CMB anisotropies by the large-scale distribution of matter in the universe. After describing the pipeline and its implementation, we present the Websky maps, created from a realization of the cosmic web on our past light cone in the redshift interval 0<z<4.6 over the full-sky and a volume of ~(600 Gpc/h)^3 resolved with ~10^12 resolution elements. The Websky maps and halo catalog are publicly available at mocks.cita.utoronto.ca/websky.
213 - Neelima Sehgal 2009
We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands to make these simulations applicable to other microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster populations, the CMB is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zeldovich (SZ) signals from galaxy clusters, groups, and the IGM has been included, and the gas prescription to model the SZ signals matches the most recent X-ray observations. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared galaxies, which are likely lensed sources, contribute most to the SZ contamination of very massive clusters at 90 and 148 GHz. These simulations are publicly available and should serve as a useful tool for microwave surveys to cross-check SZ cluster detection, power spectrum, and cross-correlation analyses.
We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared background. The PSM enables the production of random realizations of the sky emission, constrained to match observational data within their uncertainties, and is implemented in a software package that is regularly updated with incoming information from observations. The model is expected to serve as a useful tool for optimizing planned microwave and sub-millimetre surveys and to test data processing and analysis pipelines. It is, in particular, used for the development and validation of data analysis pipelines within the planck collaboration. A version of the software that can be used for simulating the observations for a variety of experiments is made available on a dedicated website.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا