ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of the Microwave Sky

212   0   0.0 ( 0 )
 نشر من قبل Neelima Sehgal
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Neelima Sehgal




اسأل ChatGPT حول البحث

We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands to make these simulations applicable to other microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster populations, the CMB is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zeldovich (SZ) signals from galaxy clusters, groups, and the IGM has been included, and the gas prescription to model the SZ signals matches the most recent X-ray observations. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared galaxies, which are likely lensed sources, contribute most to the SZ contamination of very massive clusters at 90 and 148 GHz. These simulations are publicly available and should serve as a useful tool for microwave surveys to cross-check SZ cluster detection, power spectrum, and cross-correlation analyses.

قيم البحث

اقرأ أيضاً

We present 500 high-resolution, full-sky millimeter-wave Deep Learning (DL) simulations that include lensed CMB maps and correlated foreground components. We find that these MillimeterDL simulations can reproduce a wide range of non-Gaussian summary statistics matching the input training simulations, while only being optimized to match the power spectra. The procedure we develop in this work enables the capability to mass produce independent full-sky realizations from a single expensive full-sky simulation, when ordinarily the latter would not provide enough training data. We also circumvent a common limitation of high-resolution DL simulations that they be confined to small sky areas, often due to memory or GPU issues; we do this by developing a stitching procedure that can faithfully recover the high-order statistics of a full-sky map without discontinuities or repeated features. In addition, since our network takes as input a full-sky lensing convergence map, it can in principle take a full-sky lensing convergence map from any large-scale structure (LSS) simulation and generate the corresponding lensed CMB and correlated foreground components at millimeter wavelengths; this is especially useful in the current era of combining results from both CMB and LSS surveys, which require a common set of simulations.
The Dark Sky Simulations are an ongoing series of cosmological N-body simulations designed to provide a quantitative and accessible model of the evolution of the large-scale Universe. Such models are essential for many aspects of the study of dark ma tter and dark energy, since we lack a sufficiently accurate analytic model of non-linear gravitational clustering. In July 2014, we made available to the general community our early data release, consisting of over 55 Terabytes of simulation data products, including our largest simulation to date, which used $1.07 times 10^{12}~(10240^3)$ particles in a volume $8h^{-1}mathrm{Gpc}$ across. Our simulations were performed with 2HOT, a purely tree-based adaptive N-body method, running on 200,000 processors of the Titan supercomputer, with data analysis enabled by yt. We provide an overview of the derived halo catalogs, mass function, power spectra and light cone data. We show self-consistency in the mass function and mass power spectrum at the 1% level over a range of more than 1000 in particle mass. We also present a novel method to distribute and access very large datasets, based on an abstraction of the World Wide Web (WWW) as a file system, remote memory-mapped file access semantics, and a space-filling curve index. This method has been implemented for our data release, and provides a means to not only query stored results such as halo catalogs, but also to design and deploy new analysis techniques on large distributed datasets.
The ESA Planck satellite, launched on May 14th, 2009, is the third generation space mission dedicated to the measurement of the Cosmic Microwave Background (CMB), the first light in the Universe. Planck observes the full sky in nine frequency bands f rom 30 to 857 GHz and is designed to measure the CMB anisotropies with an unprecedented combination of sensitivity, angular resolution and control of systematic effects. In this presentation we summarise the Planck instruments performance and discuss the main scientific results obtained after one year of operations in the fields of galactic and extragalactic astrophysics.
102 - D. Saez , 1996
We describe and compare two types of microwave sky simulations which are good for small angular scales. The first type uses expansions in spherical harmonics, and the second one is based on plane waves and the Fast Fourier Transform. The angular powe r spectrum is extracted from maps corresponding to both types of simulations, and the resulting spectra are appropriately compared. In this way, the features and usefulness of Fourier simulations are pointed out. For $ell geq 100$, all the simulations lead to similar accuracies; however, the CPU cost of Fourier simulations is $sim 10$ times smaller than that for spherical harmonic simulations. For $ell leq 100$, the simulations based on spherical harmonics seem to be preferable.
We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of Cosmic Microwave Background experiments. This Python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP and Planck satellite missions. We simulate synchrotron, thermal dust, free-free, and anomalous microwave emission over the whole sky, in addition to the Cosmic Microwave Background, and include a set of alternative prescriptions for the frequency dependence of each component that are consistent with current data. We also present a prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The code is available at https://github.com/bthorne93/PySM_public.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا