ﻻ يوجد ملخص باللغة العربية
We analyse the stability of periodic, travelling-wave solutions to the Kawahara equation and some of its generalizations. We determine the parameter regime for which these solutions can exhibit resonance. By examining perturbations of small-amplitude solutions, we show that generalised resonance is a mechanism for high-frequency instabilities. We derive a quadratic equation which fully determines the stability region for these solutions. Focussing on perturbations of the small-amplitude solutions, we obtain asymptotic results for how their instabilities develop and grow. Numerical computation is used to confirm these asymptotic results and illustrate regimes where our asymptotic analysis does not apply.
Recently, the Whitham and capillary-Whitham equations were shown to accurately model the evolution of surface waves on shallow water. In order to gain a deeper understanding of these equations, we compute periodic, traveling-wave solutions to both an
In this paper we investigate the orbital stability of solitary waves to the (generalized) Kawahara equation (gKW) which is a fifth order dispersive equation. For some values of the power of the nonlinearity, we prove the orbital stability in the ener
Travelling waves arise in several areas of science, hence modification of travelling wave properties is of great interest. While many studies have demonstrated how to control the form or shape of a solitary travelling wave by employing soliton or dis
The stability of the elliptic solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation is studied. The orbital stability of the cmKdV equation was established in [19] when the periodic orbits do not oscillate around zero. In th
We study a version of the Keller-Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave s