ترغب بنشر مسار تعليمي؟ اضغط هنا

On the stability of the solitary waves to the (generalized) kawahara equation

108   0   0.0 ( 0 )
 نشر من قبل Luc Molinet
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the orbital stability of solitary waves to the (generalized) Kawahara equation (gKW) which is a fifth order dispersive equation. For some values of the power of the nonlinearity, we prove the orbital stability in the energy space H 2 (R) of two branches of even solitary waves of gKW by combining the well-known spectral method introduced by Benjamin [3] with continuity arguments. We construct the first family of even solitons by applying the implicit function theorem in the neighborhood of the explicit solitons of gKW found by Dey et al. [8]. The second family consists of even travelling waves with low speeds. They are solutions of a constraint minimization problem on the line and rescaling of perturbations of the soliton of gKdV with speed 1.

قيم البحث

اقرأ أيضاً

324 - Ji Li , Yue Liu , Qiliang Wu 2019
The Degasperis-Procesi equation is an approximating model of shallow-water wave propagating mainly in one direction to the Euler equations. Such a model equation is analogous to the Camassa-Holm approximation of the two-dimensional incompressible and irrotational Euler equations with the same asymptotic accuracy, and is integrable with the bi-Hamiltonian structure. In the present study, we establish existence and spectral stability results of localized smooth solitons to the Degasperis-Procesi equation on the real line. The stability proof relies essentially on refined spectral analysis of the linear operator corresponding to the second-order variational derivative of the Hamiltonian of the Degasperis-Procesi equation.
145 - Ji Li , Yue Liu , Qiliang Wu 2020
The Degasperis-Procesi equation is the integrable Camassa-Holm-type model which is an asymptotic approximation for the unidirectional propagation of shallow water waves. This work establishes the orbital stability of localized smooth solitary waves t o the Desgasperis-Procesi (DP) equation on the real line. %extending our previous work on their spectral stability cite{LLW}. The main difficulty stems from the fact that the translation symmetry for the DP equation gives rise to a conserved quantity equivalent to the $L^2$-norm, which by itself can not bound the higher-order nonlinear terms in the Lagrangian. The remedy is to observe that, given a sufficiently smooth initial condition satisfying a measurable constraint, the $L^infty$ orbital norm of the perturbation is bounded above by a function of its $L^2$ orbital norm, yielding the orbital stability in the $L^2cap L^infty$ space.
We analyse the stability of periodic, travelling-wave solutions to the Kawahara equation and some of its generalizations. We determine the parameter regime for which these solutions can exhibit resonance. By examining perturbations of small-amplitude solutions, we show that generalised resonance is a mechanism for high-frequency instabilities. We derive a quadratic equation which fully determines the stability region for these solutions. Focussing on perturbations of the small-amplitude solutions, we obtain asymptotic results for how their instabilities develop and grow. Numerical computation is used to confirm these asymptotic results and illustrate regimes where our asymptotic analysis does not apply.
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.
We consider dispersion generalized nonlinear Schrodinger equations (NLS) of the form $i partial_t u = P(D) u - |u|^{2 sigma} u$, where $P(D)$ denotes a (pseudo)-differential operator of arbitrary order. As a main result, we prove symmetry results for traveling solitary waves in the case of powers $sigma in mathbb{N}$. The arguments are based on Steiner type rearrangements in Fourier space. Our results apply to a broad class of NLS-type equations such as fourth-order (biharmonic) NLS, fractional NLS, square-root Klein-Gordon and half-wave equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا