ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulse sequences for controlled 2- and 3-qubit gates in a hybrid quantum register

126   0   0.0 ( 0 )
 نشر من قبل Jingfu Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and demonstrate a quantum control scheme for hybrid quantum registers that can reduce the operation time, and therefore the effects of relaxation, compared to existing implementations. It combines resonant excitation pulses with periods of free precession under the internal Hamiltonian of the qubit system. We use this scheme to implement quantum gates like controlled-NOT operations on electronic and nuclear spins of the nitrogen-vacancy center in diamond. As a specific application, we transfer population between electronic and nuclear spin qubits and use it to measure the Rabi oscillations of a nuclear spin in a system with multiple coupled spins.



قيم البحث

اقرأ أيضاً

We provide a characterization and analysis of the effects of dissipation on oscillator assisted (qubus) quantum gates. The effects can be understood and minimized by looking at the dynamics of the signal coherence and its entanglement with the contin uous variable probe. Adding loss in between successive interactions we obtain the effective quantum operations, providing a novel approach to loss analysis in such hybrid settings. We find that in the presence of moderate dissipation the gate can operate with a high fidelity. We also show how a simple iteration scheme leads to independent single qubit dephasing, while retaining the conditional phase operation regardless of the amount of loss incurred by the probe.
In multi-qubit system, correlated errors subject to unwanted interactions with other qubits is one of the major obstacles for scaling up quantum computers to be applicable. We present two approaches to correct such noise and demonstrate with high fid elity and robustness. We use spectator and intruder to discriminate the environment interacting with target qubit in different parameter regime. Our proposed approaches combines analytical theory and numerical optimization, and are general to obtain smooth control pulses for various qubit systems. Both theory and numerical simulations demonstrate to correct these errors efficiently. Gate fidelities are generally above $0.9999$ over a large range of parameter variation for a set of single-qubit gates and two-qubit entangling gates. Comparison with well-known control waveform demonstrates the great advantage of our solutions.
71 - Shi Hu , Wen-Xue Cui , Qi Guo 2016
Non-adiabatic holonomic quantum gate in decoherence-free subspaces is of greatly practical importance due to its built-in fault tolerance, coherence stabilization virtues, and short run-time. Here we propose some compact schemes to implement two- and three-qubit controlled unitary quantum gates and Fredkin gate. For the controlled unitary quantum gates, the unitary operator acting on the target qubit is an arbitrary single-qubit gate operation. The controlled quantum gates can be directly implemented using non-adiabatic holonomy in decoherence-free subspaces and the required resource for the decoherence-free subspace encoding is minimal by using only two neighboring physical qubits undergoing collective dephasing to encode a logical qubit.
Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence, developing coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage, however, utilizing them as a resource for single spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear spin-rich yttrium orthovanadate crystal, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically-engineered spin exchange interaction, we polarise this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a long-lived quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb--51V Bell states. Unlike conventional, disordered nuclear spin based quantum memories, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits. Our approach provides a framework for utilising the complex structure of dense nuclear spin baths, paving the way for building large-scale quantum networks using single rare-earth ion qubits.
Current quantum computers are especially error prone and require high levels of optimization to reduce operation counts and maximize the probability the compiled program will succeed. These computers only support operations decomposed into one- and t wo-qubit gates and only two-qubit gates between physically connected pairs of qubits. Typical compilers first decompose operations, then route data to connected qubits. We propose a new compiler structure, Orchestrated Trios, that first decomposes to the three-qubit Toffoli, routes the inputs of the higher-level Toffoli operations to groups of nearby qubits, then finishes decomposition to hardware-supported gates. This significantly reduces communication overhead by giving the routing pass access to the higher-level structure of the circuit instead of discarding it. A second benefit is the ability to now select an architecture-tuned Toffoli decomposition such as the 8-CNOT Toffoli for the specific hardware qubits now known after the routing pass. We perform real experiments on IBM Johannesburg showing an average 35% decrease in two-qubit gate count and 23% increase in success rate of a single Toffoli over Qiskit. We additionally compile many near-term benchmark algorithms showing an average 344% increase in (or 4.44x) simulated success rate on the Johannesburg architecture and compare with other architecture types.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا