ﻻ يوجد ملخص باللغة العربية
We use deep $HST$ WFC3/IR imaging to study the Initial Mass Function (IMF) of the ultra faint dwarf galaxy Coma Berenices (Com Ber). Our observations reach the lowest stellar mass ever probed in a resolved galaxy, with 50% completeness at $sim 0.17$ M$_{odot}$. Unresolved background galaxies however limit our purity below $sim 0.23$ M$_{odot}$. If modeled with a single power law, we find that the IMF slope is $-1.45^{+0.29}_{-0.3}$ (68% credible intervals), compared to a Milky Way value of $-2.3$. For a broken power law, we obtain a low-mass slope of $-1.18_{-0.33}^{+0.49}$, a high-mass slope of $-1.88_{-0.49}^{+0.43}$ and a break mass of $0.57_{-0.08}^{+0.12}$ M$_{odot}$, compared to $-1.3$, $-2.3$ and 0.5 M$_{odot}$ for a Kroupa IMF. For a log-normal IMF model we obtain values of $0.33_{-0.16}^{+0.15}$ M$_{odot}$ for the location parameter and of $0.68_{-0.12}^{+0.17}$ for $sigma$ (0.22 M$_{odot}$ and 0.57 for the Chabrier system IMF). All three parametrizations produce similar agreement with the data. Our results agree with previous analysis of shallower optical HST data. However analysis of similar optical data of other dwarfs finds IMFs significantly more bottom-light than in the Milky Way. These results suggest two, non mutually exclusive, possibilities: that the discrepancy of the dwarf galaxies IMF with respect to the Milky Way is, at least partly, an artifact of using a single power law model, and that there is real variance in the IMF at low masses between the currently studied nearby dwarfs, with Com Ber being similar to the Milky Way, but other dwarfs differing significantly.
Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ-band (0.9--1.35 micron) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compar
Using the Oxford Short Wavelength Integral Field specTrograph (SWIFT), we trace radial variations of initial mass function (IMF) sensitive absorption features of three galaxies in the Coma cluster. We obtain resolved spectroscopy of the central 5kpc
Massive relic galaxies formed the bulk of their stellar component before z~2 and have remained unaltered since then. Therefore, they represent a unique opportunity to study in great detail the frozen stellar population properties of those galaxies th
We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope
We present the core mass function (CMF) of the massive star-forming clump G33.92+0.11 using 1.3 mm observations obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). With a resolution of 1000 au, this is one of the highest resolution