ﻻ يوجد ملخص باللغة العربية
With the rapid development of deep learning, deep reinforcement learning (DRL) began to appear in the field of resource scheduling in recent years. Based on the previous research on DRL in the literature, we introduce online resource scheduling algorithm DeepRM2 and the offline resource scheduling algorithm DeepRM_Off. Compared with the state-of-the-art DRL algorithm DeepRM and heuristic algorithms, our proposed algorithms have faster convergence speed and better scheduling efficiency with regarding to average slowdown time, job completion time and rewards.
This paper presents a novel and effective deep reinforcement learning (DRL)-based approach to addressing joint resource management (JRM) in a practical multi-carrier non-orthogonal multiple access (MC-NOMA) system, where hardware sensitivity and impe
This paper aims to examine the potential of using the emerging deep reinforcement learning techniques in flight control. Instead of learning from scratch, we suggest to leverage domain knowledge available in learning to improve learning efficiency an
We consider a source that wishes to communicate with a destination at a desired rate, over a mmWave network where links are subject to blockage and nodes to failure (e.g., in a hostile military environment). To achieve resilience to link and node fai
Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automa
In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for