ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring NSI degeneracies in long-baseline experiments

180   0   0.0 ( 0 )
 نشر من قبل Estela A. Garces
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the main purposes of long-baseline neutrino experiments is to unambiguously measure the CP violating phase in the neutrino sector within the three neutrino oscillation picture. In the presence of physics beyond the Standard Model, the determination of the CP phase will be more difficult, due to the already known degeneracy problem. Working in the framework of non-standard interactions (NSI), we compute the appearance probabilities in an exact analytical formulation and analyze the region of parameters where the confusion problem is present. We also discuss some cases where the falsification of the NSI parameters can be done in long-baseline experiments.



قيم البحث

اقرأ أيضاً

Future neutrino-oscillation experiments are expected to bring definite answers to the questions of neutrino-mass hierarchy and violation of charge-parity symmetry in the lepton sector. To realize this ambitious program it is necessary to ensure a sig nificant reduction of uncertainties, particularly those related to neutrino-energy reconstruction. In this paper, we discuss different sources of systematic uncertainties, paying special attention to those arising from nuclear effects and detector response. By analyzing nuclear effects we show the importance of developing accurate theoretical models, capable to provide quantitative description of neutrino cross sections, together with the relevance of their implementation in Monte Carlo generators and extensive testing against lepton-scattering data. We also point out the fundamental role of efforts aiming to determine detector responses in test-beam exposures.
Environmental decoherence of oscillating neutrinos of strength $Gamma = (2.3 pm 1.1) times 10^{-23}$ GeV can explain how maximal $theta_{23}$ mixing observed at 295 km by T2K appears to be non-maximal at longer baselines. As shown recently by R. Oliv eira, the MSW matter effect for neutrinos is altered by decoherence: In normal (inverted) mass hierarchy, a resonant enhancement of $ u_{mu} (bar{ u}_{mu}) rightarrow u_{e} (bar{ u}_{e})$ occurs for $6 < E_{ u} < 20$ GeV. Thus decoherence at the rated strength may be detectable as an excess of charged-current $ u_{e}$ events in the full $ u_{mu}$ exposures of MINOS+ and OPERA.
One of the unknown parameters in neutrino oscillations is the octant of the mixing angle theta_{23}. In this paper, we discuss the possibility of determining the octant of theta_{23} in the long baseline experiments T2K and NOvA in conjunction with f uture atmospheric neutrino detectors, in light of non-zero value of theta_{13} measured by reactor experiments. We consider two detector technologies for atmospheric neutrinos - magnetized iron calorimeter and non-magnetized Liquid Argon Time Projection Chamber. We present the octant sensitivity for T2K/NOvA and atmospheric neutrino experiments separately as well as combined. For the long baseline experiments, a precise measurement of theta_{13}, which can exclude degenerate solutions in the wrong octant, increases the sensitivity drastically. For theta_{23} = 39^o and sin^2 2 theta_{13} = 0.1, at least ~2 sigma sensitivity can be achieved by T2K+NOvA for all values of delta_{CP} for both normal and inverted hierarchy. For atmospheric neutrinos, the moderately large value of theta_{13} measured in the reactor experiments is conducive to octant sensitivity because of enhanced matter effects. A magnetized iron detector can give a 2 sigma octant sensitivity for 500 kT yr exposure for theta_{23} = 39^o, delta_{CP} = 0 and normal hierarchy. This increases to 3 sigma for both hierarchies by combining with T2K+NOvA. This is due to a preference of different theta_{23} values at the minimum chi^2 by T2K/NOvA and atmospheric neutrino experiments. A Liquid Argon detector for atmospheric neutrinos with the same exposure can give higher octant sensitivity, due to the interplay of muon and electron contributions and superior resolutions. We obtain a ~3 sigma sensitivity for theta_{23} = 39^o for normal hierarchy. This increases to > ~4 sigma for all values of delta_{CP} if combined with T2K+NOvA. For inverted hierarchy the combined sensitivity is ~3 sigma.
A possibility to measure $sin^22theta_{13}$ using reactor neutrinos is examined in detail. It is shown that the sensitivity $sin^22theta_{13}>0.02$ can be reached with 20 ton-year data by placing identical CHOOZ-like detectors at near and far distanc es from a giant nuclear power plant whose total thermal energy is 24.3 ${text{GW}_{text{th}}}$. It is emphasized that this measurement is free from the parameter degeneracies which occur in accelerator appearance experiments, and therefore the reactor measurement plays a role complementary to accelerator experiments. It is also shown that the reactor measurement may be able to resolve the degeneracy in $theta_{23}$ if $sin^22theta_{13}$ and $cos^22theta_{23}$ are relatively large.
We perform realistic simulations of the current and future long baseline experiments such as T2K, NO$ u$A, DUNE and T2HK in order to determine their ultimate potential in probing neutrino oscillation parameters. We quantify the potential of these exp eriments to underpin the octant of the atmospheric angle $theta_{23}$ as well as the value and sign of the CP phase $delta_{CP}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا