ﻻ يوجد ملخص باللغة العربية
Let $(R,mathfrak m)$ be an analytically unramified local ring of positive prime characteristic $p.$ For an ideal $I$, let $I^*$ denote its tight closure. We introduce the tight Hilbert function $H^*_I(n)=ell(R/(I^n)^*)$ and the corresponding tight Hilbert polynomial $P_I^*(n)$ where $I$ is an $mathfrak m$-primary ideal. It is proved that $F$-rationality can be detected by the vanishing of the first coefficient of $P_I^*(n).$ We find the tight Hilbert polynomial of certain parameter ideals in hypersurface rings and Stanley-Reisner rings of simplicial complexes.
In this paper we find the tight closure of powers of parameter ideals of certain diagonal hypersurface rings. In many cases the associated graded ring with respect to tight closure filtration turns out to be Cohen-Macaulay. This helps us find the tig
In this article, we study the regularity of integral closure of powers of edge ideals. We obtain a lower bound for the regularity of integral closure of powers of edge ideals in terms of induced matching number of graphs. We prove that the regularity
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We deter
The Qth-power algorithm for computing structured global presentations of integral closures of affine domains over finite fields is modified to compute structured presentations of integral closures of ideals in affine domains over finite fields relati
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, s