ﻻ يوجد ملخص باللغة العربية
Three dimensional FLASH magneto-hydrodynamics(MHD) modeling is carried out to interpret the OMEGA laser experiments of strongly magnetized, highly collimated jets driven by a ring of 20 OMEGA beams. The predicted optical Thomson scattering spectra and proton images are in good agreement with a subset of the experimental data. Magnetic fields generated via the Biermann battery term are amplified at the boundary between the core and the surrounding of the jet. The simulation predicts multiple axially aligned magnetic flux ropes with alternating poloidal component. Future applications of the hollow ring configuration in laboratory astrophysics are discussed.
Wakefield particle acceleration in hollow plasma channels is under extensive study nowadays. Here we consider an externally magnetized plasma layer (external magnetic field of arbitrary magnitude is along the structure axis) and investigate wakefield
The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive
Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of simulation dimensionality on the laser-driven electron acceleration and the emission of collimated $gamma$-ray beams from hollow micro-channel targets
The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wake-field acceleration have strongly been promoted during the last deca
The emission characteristics of intense laser driven protons are controlled using ultra-strong (of the order of 10^9 V/m) electrostatic fields varying on a few ps timescale. The field structures are achieved by exploiting the high potential of the ta