ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic FitzHugh-Nagumo neuron model in excitable regime embeds a leaky integrate-and-fire model

365   0   0.0 ( 0 )
 نشر من قبل Tat Dat Tran
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh-Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in [Ditlevsen, S. and Greenwood, P. (2013). The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. Journal of Mathematical Biology, 67(2):239-259] for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.

قيم البحث

اقرأ أيضاً

We show that the stochastic Morris-Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein-Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a lea ky integrate-and-fire (LIF) model prior to firing. A new model constructed from a radial OU process together with a simple firing mechanism based on detailed Morris-Lecar firing statistics reproduces the Morris-Lecar Interspike Interval (ISI) distribution, and has the computational advantages of a LIF. The result justifies the large amount of attention paid to the LIF models.
We study the dynamics of identical leaky integrate-and-fire neurons with symmetric non-local coupling. Upon varying control parameters (coupling strength, coupling range, refractory period) we investigate the systems behaviour and highlight the forma tion of chimera states. We show that the introduction of a refractory period enlarges the parameter region where chimera states appear and affects the chimera multiplicity.
We use geometric singular perturbation techniques combined with an action functional approach to study traveling pulse solutions in a three-component FitzHugh--Nagumo model. First, we derive the profile of traveling $1$-pulse solutions with undetermi ned width and propagating speed. Next, we compute the associated action functional for this profile from which we derive the conditions for existence and a saddle-node bifurcation as the zeros of the action functional and its derivatives. We obtain the same conditions by using a different analytical approach that exploits the singular limit of the problem. We also apply this methodology of the action functional to the problem for traveling $2$-pulse solutions and derive the explicit conditions for existence and a saddle-node bifurcation. From these we deduce a necessary condition for the existence of traveling $2$-pulse solutions. We end this article with a discussion related to Hopf bifurcations near the saddle-node bifurcation.
Statistical properties of spike trains as well as other neurophysiological data suggest a number of mathematical models of neurons. These models range from entirely descriptive ones to those deduced from the properties of the real neurons. One of the m, the diffusion leaky integrate-and-fire neuronal model, which is based on the Ornstein-Uhlenbeck stochastic process that is restricted by an absorbing barrier, can describe a wide range of neuronal activity in terms of its parameters. These parameters are readily associated with known physiological mechanisms. The other model is descriptive, Gamma renewal process, and its parameters only reflect the observed experimental data or assumed theoretical properties. Both of these commonly used models are related here. We show under which conditions the Gamma model is an output from the diffusion Ornstein-Uhlenbeck model. In some cases we can see that the Gamma distribution is unrealistic to be achieved for the employed parameters of the Ornstein-Uhlenbeck process.
In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to estab lish the convergence relationship between the regularized process and the original one where in the regularized process, the jump mechanism is replaced by a Poisson dynamic, and jump intensity within the classically forbidden domain goes to infinity as the regularization parameter vanishes. On the macroscopic level, the Fokker-Planck equation for the process with random discharges (i.e. Poisson jumps) are defined on the whole space, while the equation for the limit process is on the half space. However, with the iteration scheme, the difficulty due to the domain differences has been greatly mitigated and the convergence for the stochastic process and the firing rates can be established. Moreover, we find a polynomial-order convergence for the distribution by a re-normalization argument in probability theory. Finally, by numerical experiments, we quantitatively explore the rate and the asymptotic behavior of the convergence for both linear and nonlinear models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا