ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic free-space source of single photons using Rydberg atoms

112   0   0.0 ( 0 )
 نشر من قبل David Petrosyan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an efficient free-space scheme to create single photons in a well-defined spatiotemporal mode. To that end, we first prepare a single source atom in an excited Rydberg state. The source atom interacts with a large ensemble of ground-state atoms via a laser-mediated dipole-dipole exchange interaction. Using an adiabatic passage with a chirped laser pulse, we produce a spatially extended spin wave of a single Rydberg excitation in the ensemble, accompanied by the transition of the source atom to another Rydberg state. The collective atomic excitation can then be converted to a propagating optical photon via a coherent coupling field. In contrast to previous approaches, our single-photon source does not rely on the strong coupling of a single emitter to a resonant cavity, nor does it require the heralding of collective excitation or complete Rydberg blockade of multiple excitations in the atomic ensemble.



قيم البحث

اقرأ أيضاً

The generation and manipulation of entanglement between isolated particles has precipitated rapid progress in quantum information processing. Entanglement is also known to play an essential role in the optical properties of atomic ensembles, but fund amental effects in the controlled emission and absorption from small, well-defined numbers of entangled emitters in free space have remained unobserved. Here we present the control of the spontaneous emission rate of a single photon from a pair of distant, entangled atoms into a free-space optical mode. Changing the length of the optical path connecting the atoms modulates the emission rate with a visibility $V = 0.27 pm 0.03$ determined by the degree of entanglement shared between the atoms, corresponding directly to the concurrence $mathcal{C_{rho}}= 0.31 pm 0.10$ of the prepared state. This scheme, together with population measurements, provides a fully optical determination of the amount of entanglement. Furthermore, large sensitivity of the interference phase evolution points to applications of the presented scheme in high-precision gradient sensing.
We demonstrate the first deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate. Parity oscillation measurements reveal an entanglement fidelity of $F=0.58pm0.04$, which is above t he entanglement threshold of $F=0.5$, without any correction for atom loss, and $F=0.71pm0.05$ after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.
The interaction of a single photon with an individual two-level system is the textbook example of quantum electrodynamics. Achieving strong coupling in this system so far required confinement of the light field inside resonators or waveguides. Here, we demonstrate strong coherent coupling between a single Rydberg superatom, consisting of thousands of atoms behaving as a single two-level system due to the Rydberg blockade, and a propagating light pulse containing only a few photons. The strong light-matter coupling in combination with the direct access to the outgoing field allows us to observe for the first time the effect of the interactions on the driving field at the single photon level. We find that all our results are in quantitative agreement with the predictions of the theory of a single two-level system strongly coupled to a single quantized propagating light mode. The demonstrated coupling strength opens the way towards interfacing photonic and atomic qubits and preparation of propagating non-classical states of light, two crucial building blocks in future quantum networks.
Quantum Entanglement is the essence of quantum physics and inspires fundamental questions about the principles of nature. Moreover it is also the basis for emerging technologies of quantum information processing such as quantum cryptography, quantum teleportation and quantum computation. Bells discovery, that correlations measured on entangled quantum systems are at variance with a local realistic picture led to a flurry of experiments confirming the quantum predictions. However, it is still experimentally undecided whether quantum entanglement can survive global distances, as predicted by quantum theory. Here we report the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality measured by two observers separated by 144 km between the Canary Islands of La Palma and Tenerife via an optical free-space link using the Optical Ground Station (OGS) of the European Space Agency (ESA). Furthermore we used the entangled pairs to generate a quantum cryptographic key under experimental conditions and constraints characteristic for a Space-to-ground experiment. The distance in our experiment exceeds all previous free-space experiments by more than one order of magnitude and exploits the limit for ground-based free-space communication; significantly longer distances can only be reached using air- or space-based platforms. The range achieved thereby demonstrates the feasibility of quantum communication in space, involving satellites or the International Space Station (ISS).
We show unambiguous violations of different macrorealist inequalities, like the LGI and the WLGI using a heralded, single-photon based experimental setup comprising one Mach-Zehnder interferometer followed by a displaced Sagnac one. The negative resu lt measurements (NRM) are implemented in order to validate the presumption of non-invasive measurability used in defining macrorealism. Among all the experiments to date testing macrorealism, the present experiment stands out in comprehensively addressing the relevant loopholes. The clumsiness loophole is addressed through precision testing of any classical invasiveness involved in the implementation of NRMs. This is done by suitably choosing the experimental parameters so that the quantum mechanically predicted validity of all the relevant two-time no-signalling in time (NSIT) conditions is maintained in all the three pairwise experiments performed to show LGI/WLGI violation. Further, importantly, the detection efficiency loophole is addressed by adopting suitable modifications in the measurement strategy enabling the demonstration of the violation of LGI/WLGI for any non-zero detection efficiency. We also show how other relevant loopholes like the multiphoton emission loophole, coincidence loophole, and the preparation state loophole are all closed in the present experiment. We report the LGI violation of $1.32pm 0.04$ and the WLGI violation of $0.10pm 0.02$, where the magnitudes of violation are respectively 8 times and 5 times the corresponding error values, while agreeing perfectly with the ranges of the quantum mechanically predicted values of the LGI, WLGI expressions that we estimate by taking into account the non-idealities of the actual experiment. Simultaneously, the experimentally observed probabilities satisfy all the two-time NSIT conditions up to the order of $10^{-2}$, which ensures non-invasiveness in the implemented NRMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا