ﻻ يوجد ملخص باللغة العربية
We highlight some of the interesting properties of a new and finite, exact family of solutions of 1 + 1 dimensional perfect fluid relativistic hydrodynamics. After reviewing the main properties of this family of solutions, we present the formulas that connect it to the measured rapidity and pseudo-rapidity densities and illustrate the results with fits to p+p collisions at 8 TeV and Pb+Pb collisions at $sqrt{s_{NN}} = 5.02 $ TeV.
New, analytic solutions of relativistic viscous hydrodynamics are presented, describing expanding fireballs with Hubble-like velocity profile and ellipsoidal symmetry, similar to fireballs created in heavy ion collisions. We find that with these spec
We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipa
We have studied analytically the longitudinally boost-invariant motion of a relativistic dissipative fluid with spin. We have derived the analytic solutions of spin density and spin chemical potential as a function of proper time $tau$ in the presenc
Dijet production has been measured in pPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. A data sample corresponding to an integrated luminosity of 35 inverse nanobarns was collected using the Compact Muon Solenoid detector at the
We present exact, analytic and simple solutions of relativistic perfect fluid hydrodynamics. The solutions allow us to calculate the rapidity distribution of the particles produced at the freeze-out, and fit them to the measured rapidity distribution