ﻻ يوجد ملخص باللغة العربية
We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipative fluid coupled to Yang-Mills gauge field. We calculate the transport coefficients of the new fluid, which show the non-Abelian character of the gauge group. In particular, we obtain group-valued terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. While using SU(2) for simplicity, this approach is applicable to any gauge group. Resulting a robust description of non-Abelian hydrodynamics, we discuss some links between this system and quark-gluon plasma and fluid/gravity duality.
We report analytically known states at non-zero temperature which may serve as a powerful tool to reveal common topological and thermodynamic properties of systems ranging from the QCD phase diagram to topological phase transitions in condensed matte
We investigate the effects of stochastic interactions on hydrodynamic correlation functions using the Schwinger-Keldysh effective field theory. We identify new stochastic transport coefficients that are invisible in the classical constitutive relatio
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean h
Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we present a non-Abelian basis tensor
Recently a detailed correspondence was established between, on one side, four and five-dimensional large-N supersymmetric gauge theories with $mathcal{N}=2$ supersymmetry and adjoint matter, and, on the other side, integrable 1+1-dimensional quantum