ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of the extraplanar H$alpha$ and UV emissions in the halos of nearby edge-on spiral galaxies

374   0   0.0 ( 0 )
 نشر من قبل Young-Soo Jo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare vertical profiles of the extraplanar H$alpha$ emission to those of the UV emission for 38 nearby edge-on late-type galaxies. It is found that detection of the diffuse extraplanar dust (eDust), traced by the vertically extended, scattered UV starlight, always coincides with the presence of the extraplanar H$alpha$ emission. A strong correlation between the scale heights of the extraplanar H$alpha$ and UV emissions is also found; the scale height at H$alpha$ is found to be $sim0.74$ of the scale height at FUV. Our results may indicate the multiphase nature of the diffuse ionized gas and dust in the galactic halos. The existence of eDust in galaxies where the extraplanar H$alpha$ emission is detected suggests that a larger portion of the extraplanar H$alpha$ emission than that predicted in previous studies may be caused by H$alpha$ photons that originate from H II regions in the galactic plane and are subsequently scattered by the eDust. This possibility raise a in studying the eDIG. We also find that the scale heights of the extraplanar emissions normalized to the galaxy size correlate well with the star formation rate surface density of the galaxies. The properties of eDust in our galaxies is on a continuation line of that found through previous observations of the extraplanar polycyclic aromatic hydrocarbons emission in more active galaxies known to have galactic winds.



قيم البحث

اقرأ أيضاً

86 - Joern Rossa 2003
In this second paper on the investigation of extraplanar diffuse ionized gas in nearby edge-on spiral galaxies we present the actual results of the individual galaxies of our H-alpha imaging survey. A grand total of 74 galaxies have been studied, inc luding the 9 galaxies of a recently studied sub-sample (Rossa & Dettmar 2000). 40.5% of all studied galaxies reveal extraplanar diffuse ionized gas, whereas in 59.5% of the survey galaxies no extraplanar diffuse ionized gas could be detected. The average distances of this extended emission above the galactic midplane range from 1-2 kpc, while individual filaments in a few galaxies reach distances of up to |z| ~ 6 kpc. In several cases a pervasive layer of ionized gas was detected, similar to the Reynolds layer in our Milky Way, while other galaxies reveal only extended emission locally. The morphology of the diffuse ionized gas is discussed for each galaxy and is compared with observations of other important ISM constituents in the context of the disk-halo connection, in those cases where published results were available. Furthermore, we present the distribution of extraplanar dust in these galaxies, based on an analysis of the unsharp-masked R-band images. The results are compared with the distribution of the diffuse ionized gas.
Gas infall and outflow are critical for determining the star formation rate and chemical evolution of galaxies but direct measurements of gas flows are diffcult to make. Young massive stars and HII regions in the halos of galaxies are potential trace rs for accretion and/or outflows of gas. Gas phase abundances of three HII regions in the lower halos of the edge-on galaxies NGC 3628 and NGC 4522 are determined by analysing optical long-slit spectra. The observed regions have projected distances to the midplane of their host from 1.4 to 3 kpc. With the measured flux densities of the optical nebular emission lines, we derive the oxygen abundance 12 + log(O/H) for the three extraplanar HII regions. The analysis is based on one theoretical and two empirical strong-line calibration methods. The resulting oxygen abundances of the extraplanar HII regions are comparable to the disk HII regions in one case and a little lower in the other case. Since our results depend on the accuracy of the metallicity determinations, we critically discuss the difference of the calibration methods we applied and confirm previously noted offsets. From our measurements, we argue that these three extraplanar HII regions were formed in the disk or at least from disk material. We discuss the processes that could transport disk material into the lower halo of these systems and conclude that gravitational interaction with a companion galaxy is most likely for NGC 3628 while ram pressure is favoured in the case of NGC 4522.
We investigate the prevalence, properties, and kinematics of extraplanar diffuse ionized gas (eDIG) in a sample of 25 edge-on galaxies selected from the CALIFA survey. We measure ionized gas scale heights from ${rm Halpha}$ and find that 90% have mea surable scale heights with a median of $0.8^{+0.7}_{-0.4}$ kpc. From the ${rm Halpha}$ kinematics, we find that 60% of galaxies show a decrease in the rotation velocity as a function of height above the midplane. This lag is characteristic of eDIG, and we measure a median lag of 21 km s$^{-1}$ kpc$^{-1}$ which is comparable to lags measured in the literature. We also investigate variations in the lag with radius. $rm H{small I}$ lags have been reported to systematically decrease with galactocentric radius. We find both increasing and decreasing ionized gas lags with radius, as well as a large number of galaxies consistent with no radial lag variation, and investigate these results in the context of internal and external origins for the lagging ionized gas. We confirm that the ${rm [S{small II}]}$/${rm Halpha}$ and ${rm [N{small II}]}$/${rm Halpha}$ line ratios increase with height above the midplane as is characteristic of eDIG. The ionization of the eDIG is dominated by star-forming complexes (leaky ${rm H{small II}}$ regions). We conclude that the lagging ionized gas is turbulent ejected gas likely resulting from star formation activity in the disk as opposed to gas in the stellar thick disk or bulge. This is further evidence for the eDIG being a product of stellar feedback and for the pervasiveness of this WIM-like phase in many local star-forming galaxies.
The HERON project is aimed at studying halos and low surface brightness details near galaxies. In this second HERON paper we consider in detail deep imaging (down to surface brightness of ~28 mag/arcsec$^2$ in the r band) for 35 galaxies, viewed edge -on. We confirm a range of low surface brightness features previously described in the literature but also report new ones. We classify the observed outer shapes of the galaxies into three main types (and their prototypes): disc/diamond-like (NGC891), oval (NGC4302), and boxy (NGC3628). We show that the shape of the outer disc in galaxies does not often follow the general 3D model of an exponential disc: 17 galaxies in our sample exhibit oval or even boxy isophotes at the periphery. Also, we show that the less flattened the outer disc is, the more oval or boxy its structure. Many galaxies in our sample have an asymmetric outer structure. We propose that the observed diversity of the galaxy outer shapes is defined by the merger history and its intensity: if no recent multiple minor or single major merging took place, the outer shape is diamond-like or discy. On the contrary, interacting galaxies show oval outer shapes, whereas recent merging appears to transform the outer shape to boxy.
We perform a deep wide-field imaging survey of nearby galaxies using H$alpha$ and broadband filters to investigate the characteristics of star formation in galaxies. Motivated by the finding that star formation rates (SFRs) derived from H$alpha$ flux es in dwarf galaxies are systematically lower than those inferred from far-ultraviolet (FUV) fluxes, we attempt to determine whether the same trend exists in the extended disks of two star-forming galaxies. We perform spatially resolved photometry using grid-shaped apertures to measure the FUV and H$alpha$ fluxes of star-forming regions. We also perform spectral energy distribution (SED) fittings using 11 photometric data (FUV-to-MIR) including data from the literature to estimate the local properties such as internal attenuation of individual star-forming clumps. Comparing SFR$_mathrm{FUV}$ and SFR$_mathrm{Halpha}$, which are converted from the H$alpha$ and FUV fluxes corrected for the local properties, we find that SFR$_mathrm{Halpha}$/SFR$_mathrm{FUV}$ tends to decrease as the SFR decreases. We evaluate possible causes of this discrepancy between the two SFRs by restricting parameters in the SED fitting and conclude that deficient H$alpha$ fluxes in the extended disks of galaxies are tightly correlated with recent starbursts. The strong and short starburst which is being rapidly suppressed over the last 10 Myr seems to induce a significant discrepancy between the SFR$_mathrm{Halpha}$ and SFR$_mathrm{FUV}$. In addition, the recent bursts in the extended disks of galaxies appear to have occurred azimuth-symmetrically, implying that these were likely triggered by gas accretion or internal processes rather than external perturbation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا