ترغب بنشر مسار تعليمي؟ اضغط هنا

The EDGE-CALIFA Survey: Evidence for Pervasive Extraplanar Diffuse Ionized Gas in Nearby Edge-On Galaxies

102   0   0.0 ( 0 )
 نشر من قبل Rebecca Levy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the prevalence, properties, and kinematics of extraplanar diffuse ionized gas (eDIG) in a sample of 25 edge-on galaxies selected from the CALIFA survey. We measure ionized gas scale heights from ${rm Halpha}$ and find that 90% have measurable scale heights with a median of $0.8^{+0.7}_{-0.4}$ kpc. From the ${rm Halpha}$ kinematics, we find that 60% of galaxies show a decrease in the rotation velocity as a function of height above the midplane. This lag is characteristic of eDIG, and we measure a median lag of 21 km s$^{-1}$ kpc$^{-1}$ which is comparable to lags measured in the literature. We also investigate variations in the lag with radius. $rm H{small I}$ lags have been reported to systematically decrease with galactocentric radius. We find both increasing and decreasing ionized gas lags with radius, as well as a large number of galaxies consistent with no radial lag variation, and investigate these results in the context of internal and external origins for the lagging ionized gas. We confirm that the ${rm [S{small II}]}$/${rm Halpha}$ and ${rm [N{small II}]}$/${rm Halpha}$ line ratios increase with height above the midplane as is characteristic of eDIG. The ionization of the eDIG is dominated by star-forming complexes (leaky ${rm H{small II}}$ regions). We conclude that the lagging ionized gas is turbulent ejected gas likely resulting from star formation activity in the disk as opposed to gas in the stellar thick disk or bulge. This is further evidence for the eDIG being a product of stellar feedback and for the pervasiveness of this WIM-like phase in many local star-forming galaxies.



قيم البحث

اقرأ أيضاً

We present a comparative study of molecular and ionized gas kinematics in nearby galaxies. These results are based on observations from the EDGE survey, which measured spatially resolved $^{12}$CO(J=1-0) in 126 nearby galaxies. Every galaxy in EDGE h as corresponding resolved ionized gas measurements from CALIFA. Using a sub-sample of 17 rotation dominated, star-forming galaxies where precise molecular gas rotation curves could be extracted, we derive CO and H$alpha$ rotation curves using the same geometric parameters out to $gtrsim$1 $R_e$. We find that $sim$75% of our sample galaxies have smaller ionized gas rotation velocities than the molecular gas in the outer part of the rotation curve. In no case is the molecular gas rotation velocity measurably lower than that of the ionized gas. We suggest that the lower ionized gas rotation velocity can be attributed to a significant contribution from extraplanar diffuse ionized gas in a thick, turbulence supported disk. Using observations of the H$gamma$ transition also available from CALIFA, we measure ionized gas velocity dispersions and find that these galaxies have sufficiently large velocity dispersions to support a thick ionized gas disk. Kinematic simulations show that a thick disk with a vertical rotation velocity gradient can reproduce the observed differences between the CO and H$alpha$ rotation velocities. Observed line ratios tracing diffuse ionized gas are elevated compared to typical values in the midplane of the Milky Way. In galaxies affected by this phenomenon, dynamical masses measured using ionized gas rotation curves will be systematically underestimated.
We present the first kinematic study of extraplanar diffuse ionized gas (eDIG) in the nearby, face-on disk galaxy M83 using optical emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope. We use a Marko v Chain Monte Carlo method to decompose the [NII]$lambdalambda$6548, 6583, H$alpha$, and [SII]$lambdalambda$6717, 6731 emission lines into HII region and diffuse ionized gas emission. Extraplanar, diffuse gas is distinguished by its emission-line ratios ([NII]$lambda$6583/H$alpha gtrsim 1.0$) and its rotational velocity lag with respect to the disk ($Delta v = -24$ km/s in projection). With interesting implications for isotropy, the velocity dispersion of the diffuse gas, $sigma = 96$ km/s, is a factor of a few higher in M83 than in the Milky Way and nearby, edge-on disk galaxies. The turbulent pressure gradient is sufficient to support the eDIG layer in dynamical equilibrium at an electron scale height of $h_{z} = 1$ kpc. However, this dynamical equilibrium model must be finely tuned to reproduce the rotational velocity lag. There is evidence of local bulk flows near star-forming regions in the disk, suggesting that the dynamical state of the gas may be intermediate between a dynamical equilibrium and a galactic fountain flow. As one of the first efforts to study eDIG kinematics in a face-on galaxy, this study demonstrates the feasibility of characterizing the radial distribution, bulk velocities, and vertical velocity dispersions in low-inclination systems.
101 - D. Bizyaev 2017
We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more tha n 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed $Halpha$ emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into the account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.
We present an empirical relation between the cold gas surface density ($Sigma_{rm gas}$) and the optical extinction (${rm A_V}$) in a sample of 103 galaxies from the Extragalactic Database for Galaxy Evolution (EDGE) survey. This survey provides CARM A interferometric CO observations for 126 galaxies included in the Calar Alto Legacy Integral Field Area (CALIFA) survey. The matched, spatially resolved nature of these data sets allows us to derive the $Sigma_{rm gas}$-${rm A_V}$ relation on global, radial, and kpc (spaxel) scales. We determine ${rm A_V}$ from the Balmer decrement (H$alpha$/H$beta$). We find that the best fit for this relation is $Sigma_{rm gas} ({rm M_odot pc^{-2}})sim~26~times~ {rm A_V}({rm mag})$, and that it does not depend on the spatial scale used for the fit. However, the scatter in the fits increases as we probe smaller spatial scales, reflecting the complex relative spatial distributions of stars, gas, and dust. We investigate the $Sigma_{rm gas}$/ ${rm A_V}$ ratio on radial and spaxel scales as a function of ${rm EW(Halpha)}$. We find that at larger values of ${rm EW(Halpha)}$ (i.e., actively star-forming regions) this ratio tend to converge to the value expected for dust-star mixed geometries ($sim$ 30 $mathrm{M_{odot} ,pc^{-2},mag^{-1}}$). On radial scales, we do not find a significant relation between the $Sigma_{rm gas}$/${rm A_V}$ ratio and the ionized gas metallicity. We contrast our estimates of $Sigma_{rm gas}$ using ${rm A_V}$ with compilations in the literature of the gas fraction on global and radial scales as well as with well known scaling relations such as the radial star-formation law and the $Sigma_{rm gas}$-$Sigma_*$ relation. These tests show that optical extinction is a reliable proxy for estimating $Sigma_{rm gas}$ in the absence of direct sub/millimeter observations of the cold gas.
We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit (IFU) survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas deple tion time ($tau_{rm dep}$) on kiloparsec scales in 52 galaxies. We divide each galaxy into two parts: the center, defined as the region within $0.1 R_{25}$, and the disk, defined as the region between $0.1$ and $0.7 R_{25}$. We find that 14 galaxies show a shorter $tau_{rm dep}$ ($sim 1$ Gyr) in the center relative to that in the disk ($tau_{rm dep} sim 2.4$ Gyrs), which means the central region in those galaxies is more efficient at forming stars per unit molecular gas mass. This finding implies that the centers with shorter $tau_{rm dep}$ resemble the intermediate regime between galactic disks and starburst galaxies. Furthermore, the central drop in $tau_{rm dep}$ is correlated with a central increase in the stellar surface density, suggesting that a shorter $tau_{rm dep}$ is associated with molecular gas compression by the stellar gravitational potential. We argue that varying the CO-to-H$_2$ conversion factor only exaggerates the central drop of $tau_{rm dep}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا