ﻻ يوجد ملخص باللغة العربية
Bandwidth requirements of both wireless and wired clients in access networks continue to increase rapidly, primarily due to the growth of video traffic. Application awareness can be utilized in access networks to optimize quality of experience (QoE) of end clients. In this study, we utilize information at the client-side application (e.g., video resolution) to achieve superior resource allocation that improves user QoE. We emphasize optimizing QoE of the system rather than quality of service (QoS), as user satisfaction directly relies on QoE and optimizing QoS does not necessarily optimize QoE, as shown in this study. We propose application-aware resource-allocation schemes on an Ethernet passive optical network (EPON), which supports wireless (utilizing orthogonal frequency division multiple access) and wired clients running video-conference applications. Numerical results show that the application-aware resource-allocation schemes improve QoE for video-conference applications for wired and wireless clients.
Unraveling quality of experience (QoE) of video streaming is very challenging in bandwidth shared wireless networks. It is unclear how QoE metrics such as starvation probability and buffering time interact with dynamics of streaming traffic load. In
This paper proposes and demonstrates a PHY-layer design of a real-time prototype that supports Ultra-Reliable Communication (URC) in wireless infrastructure networks. The design makes use of Orthogonal Frequency Division Multiple Access (OFDMA) as a
Intelligent and autonomous troubleshooting is a crucial enabler for the current 5G and future 6G networks. In this work, we develop a flexible architecture for detecting anomalies in adaptive video streaming comprising three main components: i) A pat
Conventional heterogeneous-traffic scheduling schemes utilize zero-delay constraint for real-time services, which aims to minimize the average packet delay among real-time users. However, in light or moderate load networks this strategy is unnecessar
Space information networks (SIN) are facing an ever-increasing thirst for high-speed and high-capacity seamless data transmission due to the integration of ground, air, and space communications. However, this imposes a new paradigm on the architectur