ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable Prediction across Unknown Environments

433   0   0.0 ( 0 )
 نشر من قبل Kun Kuang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the testing distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting the training data with the ratio of the density between test and training data. In many applications training takes place without prior knowledge of the testing distribution on which the algorithm will be applied in the future. Recently, methods have been proposed to address the shift by learning causal structure, but those methods rely on the diversity of multiple training data to a good performance, and have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimating of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real world datasets demonstrate that our DGBR algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.

قيم البحث

اقرأ أيضاً

In the era of big data, practical applications in various domains continually generate large-scale time-series data. Among them, some data show significant or potential periodicity characteristics, such as meteorological and financial data. It is cri tical to efficiently identify the potential periodic patterns from massive time-series data and provide accurate predictions. In this paper, a Periodicity-based Parallel Time Series Prediction (PPTSP) algorithm for large-scale time-series data is proposed and implemented in the Apache Spark cloud computing environment. To effectively handle the massive historical datasets, a Time Series Data Compression and Abstraction (TSDCA) algorithm is presented, which can reduce the data scale as well as accurately extracting the characteristics. Based on this, we propose a Multi-layer Time Series Periodic Pattern Recognition (MTSPPR) algorithm using the Fourier Spectrum Analysis (FSA) method. In addition, a Periodicity-based Time Series Prediction (PTSP) algorithm is proposed. Data in the subsequent period are predicted based on all previous period models, in which a time attenuation factor is introduced to control the impact of different periods on the prediction results. Moreover, to improve the performance of the proposed algorithms, we propose a parallel solution on the Apache Spark platform, using the Streaming real-time computing module. To efficiently process the large-scale time-series datasets in distributed computing environments, Distributed Streams (DStreams) and Resilient Distributed Datasets (RDDs) are used to store and calculate these datasets. Extensive experimental results show that our PPTSP algorithm has significant advantages compared with other algorithms in terms of prediction accuracy and performance.
We study black-box reward poisoning attacks against reinforcement learning (RL), in which an adversary aims to manipulate the rewards to mislead a sequence of RL agents with unknown algorithms to learn a nefarious policy in an environment unknown to the adversary a priori. That is, our attack makes minimum assumptions on the prior knowledge of the adversary: it has no initial knowledge of the environment or the learner, and neither does it observe the learners internal mechanism except for its performed actions. We design a novel black-box attack, U2, that can provably achieve a near-matching performance to the state-of-the-art white-box attack, demonstrating the feasibility of reward poisoning even in the most challenging black-box setting.
Traditional learning approaches for classification implicitly assume that each mistake has the same cost. In many real-world problems though, the utility of a decision depends on the underlying context $x$ and decision $y$. However, directly incorpor ating these utilities into the learning objective is often infeasible since these can be quite complex and difficult for humans to specify. We formally study this as agnostic learning with unknown utilities: given a dataset $S = {x_1, ldots, x_n}$ where each data point $x_i sim mathcal{D}$, the objective of the learner is to output a function $f$ in some class of decision functions $mathcal{F}$ with small excess risk. This risk measures the performance of the output predictor $f$ with respect to the best predictor in the class $mathcal{F}$ on the unknown underlying utility $u^*$. This utility $u^*$ is not assumed to have any specific structure. This raises an interesting question whether learning is even possible in our setup, given that obtaining a generalizable estimate of utility $u^*$ might not be possible from finitely many samples. Surprisingly, we show that estimating the utilities of only the sampled points~$S$ suffices to learn a decision function which generalizes well. We study mechanisms for eliciting information which allow a learner to estimate the utilities $u^*$ on the set $S$. We introduce a family of elicitation mechanisms by generalizing comparisons, called the $k$-comparison oracle, which enables the learner to ask for comparisons across $k$ different inputs $x$ at once. We show that the excess risk in our agnostic learning framework decreases at a rate of $Oleft(frac{1}{k} right)$. This result brings out an interesting accuracy-elicitation trade-off -- as the order $k$ of the oracle increases, the comparative queries become harder to elicit from humans but allow for more accurate learning.
203 - Kun Kuang , Bo Li , Peng Cui 2020
In this paper, we focus on the problem of stable prediction across unknown test data, where the test distribution is agnostic and might be totally different from the training one. In such a case, previous machine learning methods might exploit subtly spurious correlations in training data induced by non-causal variables for prediction. Those spurious correlations are changeable across data, leading to instability of prediction across data. By assuming the relationships between causal variables and response variable are invariant across data, to address this problem, we propose a conditional independence test based algorithm to separate those causal variables with a seed variable as priori, and adopt them for stable prediction. By assuming the independence between causal and non-causal variables, we show, both theoretically and with empirical experiments, that our algorithm can precisely separate causal and non-causal variables for stable prediction across test data. Extensive experiments on both synthetic and real-world datasets demonstrate that our algorithm outperforms state-of-the-art methods for stable prediction.
Deep ResNet architectures have achieved state of the art performance on many tasks. While they solve the problem of gradient vanishing, they might suffer from gradient exploding as the depth becomes large (Yang et al. 2017). Moreover, recent results have shown that ResNet might lose expressivity as the depth goes to infinity (Yang et al. 2017, Hayou et al. 2019). To resolve these issues, we introduce a new class of ResNet architectures, called Stable ResNet, that have the property of stabilizing the gradient while ensuring expressivity in the infinite depth limit.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا