ترغب بنشر مسار تعليمي؟ اضغط هنا

Cut-edges and regular factors in regular graphs of odd degree

77   0   0.0 ( 0 )
 نشر من قبل Dara Zirlin
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study $2k$-factors in $(2r+1)$-regular graphs. Hanson, Loten, and Toft proved that every $(2r+1)$-regular graph with at most $2r$ cut-edges has a $2$-factor. We generalize their result by proving for $kle(2r+1)/3$ that every $(2r+1)$-regular graph with at most $2r-3(k-1)$ cut-edges has a $2k$-factor. Both the restriction on $k$ and the restriction on the number of cut-edges are sharp. We characterize the graphs that have exactly $2r-3(k-1)+1$ cut-edges but no $2k$-factor. For $k>(2r+1)/3$, there are graphs without cut-edges that have no $2k$-factor, as studied by Bollobas, Saito, and Wormald.

قيم البحث

اقرأ أيضاً

The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry break ing phase transition predicted by physicists. Additionally, we rigorously establish upper bounds on the {sc Max Cut} of random regular graphs predicted by Zdeborova and Boettcher [Journal of Statistical Mechanics 2010]. As an application we prove that the information-theoretic threshold of the disassortative stochastic block model on random regular graphs coincides with the Kesten-Stigum bound.
In this article we have derived the minimum order of an odd regular graph such that the graph has no matching. We have observed that how it is different from the case of even regular graphs. We have checked the consistency of the derived result with Petersens theorem.
A degree-regular triangulation is one in which each vertex has identical degree. Our main result is that any such triangulation of a (possibly non-compact) surface $S$ is geometric, that is, it is combinatorially equivalent to a geodesic triangulatio n with respect to a constant curvature metric on $S$, and we list the possibilities. A key ingredient of the proof is to show that any two $d$-regular triangulations of the plane for $d> 6 $ are combinatorially equivalent. The proof of this uniqueness result, which is of independent interest, is based on an inductive argument involving some combinatorial topology.
In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius $rho$ equal to $3$ or $4$, and are $1/2^i$-th parts, for $iin{1,ldots,u}$ of binary (respectively, extended binary) Hamming co des of length $n=2^m-1$ (respectively, $2^m$), where $m=2u$. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs of diameter $D$ equal to $3$ or $4$ are constructed. In some cases, the constructed codes are also completely transitive codes and the corresponding coset graphs are distance-transitive.
Szemeredis Regularity Lemma is a very useful tool of extremal combinatorics. Recently, several refinements of this seminal result were obtained for special, more structured classes of graphs. We survey these results in their rich combinatorial contex t. In particular, we stress the link to the theory of (structural) sparsity, which leads to alternative proofs, refinements and solutions of open problems. It is interesting to note that many of these classes present challenging problems. Nevertheless, from the point of view of regularity lemma type statements, they appear as gentle classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا