ترغب بنشر مسار تعليمي؟ اضغط هنا

Support Vector Machine Application for Multiphase Flow Pattern Prediction

82   0   0.0 ( 0 )
 نشر من قبل Melvin Robinson
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper a data analytical approach featuring support vector machines (SVM) is employed to train a predictive model over an experimentaldataset, which consists of the most relevant studies for two-phase flow pattern prediction. The database for this study consists of flow patterns or flow regimes in gas-liquid two-phase flow. The term flow pattern refers to the geometrical configuration of the gas and liquid phases in the pipe. When gas and liquid flow simultaneously in a pipe, the two phases can distribute themselves in a variety of flow configurations. Gas-liquid two-phase flow occurs ubiquitously in various major industrial fields: petroleum, chemical, nuclear, and geothermal industries. The flow configurations differ from each other in the spatial distribution of the interface, resulting in different flow characteristics. Experimental results obtained by applying the presented methodology to different combinations of flow patterns demonstrate that the proposed approach is state-of-the-art alternatives by achieving 97% correct classification. The results suggest machine learning could be used as an effective tool for automatic detection and classification of gas-liquid flow patterns.



قيم البحث

اقرأ أيضاً

A rapid pattern-recognition approach to characterize drivers curve-negotiating behavior is proposed. To shorten the recognition time and improve the recognition of driving styles, a k-means clustering-based support vector machine ( kMC-SVM) method is developed and used for classifying drivers into two types: aggressive and moderate. First, vehicle speed and throttle opening are treated as the feature parameters to reflect the driving styles. Second, to discriminate driver curve-negotiating behaviors and reduce the number of support vectors, the k-means clustering method is used to extract and gather the two types of driving data and shorten the recognition time. Then, based on the clustering results, a support vector machine approach is utilized to generate the hyperplane for judging and predicting to which types the human driver are subject. Lastly, to verify the validity of the kMC-SVM method, a cross-validation experiment is designed and conducted. The research results show that the $ k $MC-SVM is an effective method to classify driving styles with a short time, compared with SVM method.
Many problems that appear in biomedical decision making, such as diagnosing disease and predicting response to treatment, can be expressed as binary classification problems. The costs of false positives and false negatives vary across application dom ains and receiver operating characteristic (ROC) curves provide a visual representation of this trade-off. Nonparametric estimators for the ROC curve, such as a weighted support vector machine (SVM), are desirable because they are robust to model misspecification. While weighted SVMs have great potential for estimating ROC curves, their theoretical properties were heretofore underdeveloped. We propose a method for constructing confidence bands for the SVM ROC curve and provide the theoretical justification for the SVM ROC curve by showing that the risk function of the estimated decision rule is uniformly consistent across the weight parameter. We demonstrate the proposed confidence band method and the superior sensitivity and specificity of the weighted SVM compared to commonly used methods in diagnostic medicine using simulation studies. We present two illustrative examples: diagnosis of hepatitis C and a predictive model for treatment response in breast cancer.
We consider gradient descent like algorithms for Support Vector Machine (SVM) training when the data is in relational form. The gradient of the SVM objective can not be efficiently computed by known techniques as it suffers from the ``subtraction pro blem. We first show that the subtraction problem can not be surmounted by showing that computing any constant approximation of the gradient of the SVM objective function is $#P$-hard, even for acyclic joins. We, however, circumvent the subtraction problem by restricting our attention to stable instances, which intuitively are instances where a nearly optimal solution remains nearly optimal if the points are perturbed slightly. We give an efficient algorithm that computes a ``pseudo-gradient that guarantees convergence for stable instances at a rate comparable to that achieved by using the actual gradient. We believe that our results suggest that this sort of stability the analysis would likely yield useful insight in the context of designing algorithms on relational data for other learning problems in which the subtraction problem arises.
Sparse classifiers such as the support vector machines (SVM) are efficient in test-phases because the classifier is characterized only by a subset of the samples called support vectors (SVs), and the rest of the samples (non SVs) have no influence on the classification result. However, the advantage of the sparsity has not been fully exploited in training phases because it is generally difficult to know which sample turns out to be SV beforehand. In this paper, we introduce a new approach called safe sample screening that enables us to identify a subset of the non-SVs and screen them out prior to the training phase. Our approach is different from existing heuristic approaches in the sense that the screened samples are guaranteed to be non-SVs at the optimal solution. We investigate the advantage of the safe sample screening approach through intensive numerical experiments, and demonstrate that it can substantially decrease the computational cost of the state-of-the-art SVM solvers such as LIBSVM. In the current big data era, we believe that safe sample screening would be of great practical importance since the data size can be reduced without sacrificing the optimality of the final solution.
This paper aims at improving the classification accuracy of a Support Vector Machine (SVM) classifier with Sequential Minimal Optimization (SMO) training algorithm in order to properly classify failure and normal instances from oil and gas equipment data. Recent applications of failure analysis have made use of the SVM technique without implementing SMO training algorithm, while in our study we show that the proposed solution can perform much better when using the SMO training algorithm. Furthermore, we implement the ensemble approach, which is a hybrid rule based and neural network classifier to improve the performance of the SVM classifier (with SMO training algorithm). The optimization study is as a result of the underperformance of the classifier when dealing with imbalanced dataset. The selected best performing classifiers are combined together with SVM classifier (with SMO training algorithm) by using the stacking ensemble method which is to create an efficient ensemble predictive model that can handle the issue of imbalanced data. The classification performance of this predictive model is considerably better than the SVM with and without SMO training algorithm and many other conventional classifiers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا