ﻻ يوجد ملخص باللغة العربية
In this paper a data analytical approach featuring support vector machines (SVM) is employed to train a predictive model over an experimentaldataset, which consists of the most relevant studies for two-phase flow pattern prediction. The database for this study consists of flow patterns or flow regimes in gas-liquid two-phase flow. The term flow pattern refers to the geometrical configuration of the gas and liquid phases in the pipe. When gas and liquid flow simultaneously in a pipe, the two phases can distribute themselves in a variety of flow configurations. Gas-liquid two-phase flow occurs ubiquitously in various major industrial fields: petroleum, chemical, nuclear, and geothermal industries. The flow configurations differ from each other in the spatial distribution of the interface, resulting in different flow characteristics. Experimental results obtained by applying the presented methodology to different combinations of flow patterns demonstrate that the proposed approach is state-of-the-art alternatives by achieving 97% correct classification. The results suggest machine learning could be used as an effective tool for automatic detection and classification of gas-liquid flow patterns.
A rapid pattern-recognition approach to characterize drivers curve-negotiating behavior is proposed. To shorten the recognition time and improve the recognition of driving styles, a k-means clustering-based support vector machine ( kMC-SVM) method is
Many problems that appear in biomedical decision making, such as diagnosing disease and predicting response to treatment, can be expressed as binary classification problems. The costs of false positives and false negatives vary across application dom
We consider gradient descent like algorithms for Support Vector Machine (SVM) training when the data is in relational form. The gradient of the SVM objective can not be efficiently computed by known techniques as it suffers from the ``subtraction pro
Sparse classifiers such as the support vector machines (SVM) are efficient in test-phases because the classifier is characterized only by a subset of the samples called support vectors (SVs), and the rest of the samples (non SVs) have no influence on
This paper aims at improving the classification accuracy of a Support Vector Machine (SVM) classifier with Sequential Minimal Optimization (SMO) training algorithm in order to properly classify failure and normal instances from oil and gas equipment