ﻻ يوجد ملخص باللغة العربية
Essentially all low-mass X-ray binaries (LMXBs) in the soft state appear to drive powerful equatorial disc winds. A simple mechanism for driving such outflows involves X-ray heating of the top of the disc atmosphere to the Compton temperature. Beyond the Compton radius, the thermal speed exceeds the escape velocity, and mass loss is inevitable. Here, we present the first coupled radiation-hydrodynamic simulation of such thermally-driven disc winds. The main advance over previous modelling efforts is that the frequency-dependent attenuation of the irradiating SED is taken into account. We can therefore relax the approximation that the wind is optically thin throughout which is unlikely to hold in the crucial acceleration zone of the flow. The main remaining limitations of our simulations are connected to our treatment of optically thick regions. Adopting parameters representative of the wind-driving LMXB GRO~J1655-40, our radiation-hydrodynamic model yields a mass-loss rate that is $simeq5times$ lower than that suggested by pure hydrodynamic, optically thin models. This outflow rate still represents more than twice the accretion rate and agrees well with the mass-loss rate inferred from Chandra/HETG observations of GRO~J1655-40 at a time when the system had a similar luminosity to that adopted in our simulations. The Fe XXV and Fe XXVI Lyman $rm{alpha}~$ absorption line profiles observed in this state are slightly stronger than those predicted by our simulations but the qualitative agreement between observed and simulated outflow properties means that thermal driving is a viable mechanism for powering the disc winds seen in soft-state LMXBs.
During its 2005 outburst, GRO J1655-40 was observed twice with the Chandra High Energy Transmission Grating Spectrometer; the second observation revealed a spectrum rich with ionized absorption lines from elements ranging from O to Ni (Miller et al.
We have carried out radiation-hydrodynamic simulations of thermally-driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the
We present the results of hydrodynamical simulations of the disk photosphere irradiated by strong X-rays produced in the inner most part of the disk. As expected, the irradiation heats the photosphere and drives a thermal wind. To apply our results t
X-ray irradiation heating of accretion discs in black hole X-ray binaries (BHXBs) plays a key role in regulating their outburst cycles. However, despite decades of theoretical and observational efforts, the physical mechanism(s) responsible for irrad
We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combinati