ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-grid economical algorithms for parabolic integro-differential equations with nonlinear memory

54   0   0.0 ( 0 )
 نشر من قبل Qingguo Hong
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, several two-grid finite element algorithms for solving parabolic integro-differential equations (PIDEs) with nonlinear memory are presented. Analysis of these algorithms is given assuming a fully implicit time discretization. It is shown that these algorithms are as stable as the standard fully discrete finite element algorithm, and can achieve the same accuracy as the standard algorithm if the coarse grid size $H$ and the fine grid size $h$ satisfy $H=O(h^{frac{r-1}{r}})$. Especially for PIDEs with nonlinear memory defined by a lower order nonlinear operator, our two-grid algorithm can save significant storage and computing time. Numerical experiments are given to confirm the theoretical results.



قيم البحث

اقرأ أيضاً

We consider stochastic differential equations driven by a general Levy processes (SDEs) with infinite activity and the related, via the Feynman-Kac formula, Dirichlet problem for parabolic integro-differential equation (PIDE). We approximate the solu tion of PIDE using a numerical method for the SDEs. The method is based on three ingredients: (i) we approximate small jumps by a diffusion; (ii) we use restricted jump-adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. Results of some numerical experiments, including pricing of barrier basket currency options, are presented.
179 - Christian Beck , Weinan E , 2017
High-dimensional partial differential equations (PDE) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment (CVA) models, or portfolio optimization models. The PDEs in such applica tions are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (i) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (ii) a merged formulation of the PDE and the 2BSDE problem, (iii) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (iv) a stochastic gradient descent-type optimization procedure. Numerical results obtained using ${rm T{small ENSOR}F{small LOW}}$ in ${rm P{small YTHON}}$ illustrate the efficiency and the accuracy of the method in the cases of a $100$-dimensional Black-Scholes-Barenblatt equation, a $100$-dimensional Hamilton-Jacobi-Bellman equation, and a nonlinear expectation of a $ 100 $-dimensional $ G $-Brownian motion.
In this paper we introduce a numerical method for solving nonlinear Volterra integro-differential equations. In the first step, we apply implicit trapezium rule to discretize the integral in given equation. Further, the Daftardar-Gejji and Jafari tec hnique (DJM) is used to find the unknown term on the right side. We derive existence-uniqueness theorem for such equations by using Lipschitz condition. We further present the error, convergence, stability and bifurcation analysis of the proposed method. We solve various types of equations using this method and compare the error with other numerical methods. It is observed that our method is more efficient than other numerical methods.
Via Carleman estimates we prove uniqueness and continuous dependence results for lateral Cauchy problems for linear integro-differential parabolic equations without initial conditions. The additional information supplied prescribes the conormal deriv ative of the temperature on a relatively open subset of the lateral boundary of the space-time domain.
In this paper, we propose a coupled Discrete Empirical Interpolation Method (DEIM) and Generalized Multiscale Finite element method (GMsFEM) to solve nonlinear parabolic equations with application to the Allen-Cahn equation. The Allen-Cahn equation i s a model for nonlinear reaction-diffusion process. It is often used to model interface motion in time, e.g. phase separation in alloys. The GMsFEM allows solving multiscale problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. In arXiv:1301.2866, it was shown that the GMsFEM provides a flexible tool to solve multiscale problems by constructing appropriate snapshot, offline and online spaces. In this paper, we solve a time dependent problem, where online enrichment is used. The main contribution is comparing different online enrichment methods. More specifically, we compare uniform online enrichment and adaptive methods. We also compare two kinds of adaptive methods. Furthermore, we use DEIM, a dimension reduction method to reduce the complexity when we evaluate the nonlinear terms. Our results show that DEIM can approximate the nonlinear term without significantly increasing the error. Finally, we apply our proposed method to the Allen Cahn equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا