ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note about: Local Explanation Methods for Deep Neural Networks lack Sensitivity to Parameter Values

168   0   0.0 ( 0 )
 نشر من قبل Ankur Taly
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Local explanation methods, also known as attribution methods, attribute a deep networks prediction to its input (cf. Baehrens et al. (2010)). We respond to the claim from Adebayo et al. (2018) that local explanation methods lack sensitivity, i.e., DNNs with randomly-initialized weights produce explanations that are both visually and quantitatively similar to those produced by DNNs with learned weights. Further investigation reveals that their findings are due to two choices in their analysis: (a) ignoring the signs of the attributions; and (b) for integrated gradients (IG), including pixels in their analysis that have zero attributions by choice of the baseline (an auxiliary input relative to which the attributions are computed). When both factors are accounted for, IG attributions for a random network and the actual network are uncorrelated. Our investigation also sheds light on how these issues affect visualizations, although we note that more work is needed to understand how viewers interpret the difference between the random and the actual attributions.

قيم البحث

اقرأ أيضاً

Parameters in deep neural networks which are trained on large-scale databases can generalize across multiple domains, which is referred as transferability. Unfortunately, the transferability is usually defined as discrete states and it differs with d omains and network architectures. Existing works usually heuristically apply parameter-sharing or fine-tuning, and there is no principled approach to learn a parameter transfer strategy. To address the gap, a parameter transfer unit (PTU) is proposed in this paper. The PTU learns a fine-grained nonlinear combination of activations from both the source and the target domain networks, and subsumes hand-crafted discrete transfer states. In the PTU, the transferability is controlled by two gates which are artificial neurons and can be learned from data. The PTU is a general and flexible module which can be used in both CNNs and RNNs. Experiments are conducted with various network architectures and multiple transfer domain pairs. Results demonstrate the effectiveness of the PTU as it outperforms heuristic parameter-sharing and fine-tuning in most settings.
The problem of explaining the behavior of deep neural networks has recently gained a lot of attention. While several attribution methods have been proposed, most come without strong theoretical foundations, which raises questions about their reliabil ity. On the other hand, the literature on cooperative game theory suggests Shapley values as a unique way of assigning relevance scores such that certain desirable properties are satisfied. Unfortunately, the exact evaluation of Shapley values is prohibitively expensive, exponential in the number of input features. In this work, by leveraging recent results on uncertainty propagation, we propose a novel, polynomial-time approximation of Shapley values in deep neural networks. We show that our method produces significantly better approximations of Shapley values than existing state-of-the-art attribution methods.
86 - Chen Cai , Yusu Wang 2020
Graph Neural Networks (GNNs) have achieved a lot of success on graph-structured data. However, it is observed that the performance of graph neural networks does not improve as the number of layers increases. This effect, known as over-smoothing, has been analyzed mostly in linear cases. In this paper, we build upon previous results cite{oono2019graph} to further analyze the over-smoothing effect in the general graph neural network architecture. We show when the weight matrix satisfies the conditions determined by the spectrum of augmented normalized Laplacian, the Dirichlet energy of embeddings will converge to zero, resulting in the loss of discriminative power. Using Dirichlet energy to measure expressiveness of embedding is conceptually clean; it leads to simpler proofs than cite{oono2019graph} and can handle more non-linearities.
We argue that the vulnerability of model parameters is of crucial value to the study of model robustness and generalization but little research has been devoted to understanding this matter. In this work, we propose an indicator to measure the robust ness of neural network parameters by exploiting their vulnerability via parameter corruption. The proposed indicator describes the maximum loss variation in the non-trivial worst-case scenario under parameter corruption. For practical purposes, we give a gradient-based estimation, which is far more effective than random corruption trials that can hardly induce the worst accuracy degradation. Equipped with theoretical support and empirical validation, we are able to systematically investigate the robustness of different model parameters and reveal vulnerability of deep neural networks that has been rarely paid attention to before. Moreover, we can enhance the models accordingly with the proposed adversarial corruption-resistant training, which not only improves the parameter robustness but also translates into accuracy elevation.
While deep learning methods continue to improve in predictive accuracy on a wide range of application domains, significant issues remain with other aspects of their performance including their ability to quantify uncertainty and their robustness. Rec ent advances in approximate Bayesian inference hold significant promise for addressing these concerns, but the computational scalability of these methods can be problematic when applied to large-scale models. In this paper, we describe initial work on the development ofURSABench(the Uncertainty, Robustness, Scalability, and Accu-racy Benchmark), an open-source suite of bench-marking tools for comprehensive assessment of approximate Bayesian inference methods with a focus on deep learning-based classification tasks

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا