ﻻ يوجد ملخص باللغة العربية
With the photometric data from the SDSS survey, the spectroscopic data from the SDSS/SEGUE and the LAMOST surveys, and the astrometric data from the Gaia DR2, we have identified 71 highly-probable member stars of the GD-1 cold stellar stream spread along almost its entire length (i.e. from 126 to 203 degree in Right Ascension). With the accurate spectroscopic (i.e. metallicity and line-of-sight velocity) and astrometric (i.e. proper motions) information, the position-velocity diagrams, i.e. $phi_{1}$-$mu_{alpha}$, $phi_{1}$-$mu_{delta}$ and $phi_{1}$-${v_{rm gsr}}$, of the GD-1 stream are well mapped. The stream has an average metallicity [Fe/H] $= -1.95 pm 0.23$. The rich information of member stars of the stream now available allow one not only to model its origin, but also to place strong constraints on the mass distribution and the gravitational potential of the Milky Way.
Based on the second Gaia data (Gaia DR2) and spectroscopy from the LAMOST Data Release 5, we defined the high-velocity (HiVel) stars sample as those stars with $v_{mathrm{gc}} > 0.85 v_{mathrm{esc}}$, and derived the final sample of 24 HiVel stars wi
We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are respectively a B2V type star of ~ 7 M$_{rm odot}$ with a Galactic rest-frame radial velocity of 502 km/s at a Galactocentric radius
Gaia is regularly producing Alerts on objects where photometric variability has been detected. The physical nature of these objects has often to be determined with the complementary observations from ground-based facilities. We have compared the list
We determined the chemical and kinematic properties of the Galactic thin and thick disk using a sample of 307,246 A/F/G/K-type giant stars from the LAMOST spectroscopic survey and Gaia DR2 survey. Our study found that the thick disk globally exhibits
Using deep photometric data from CFHT/Megacam, we study the morphology and density of the GD-1 stream, one of the longest and coldest stellar streams in the Milky Way. Our deep data recovers the lower main sequence of the stream with unprecedented qu