ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of two new hypervelocity stars from the LAMOST spectroscopic surveys

303   0   0.0 ( 0 )
 نشر من قبل Yang Huang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are respectively a B2V type star of ~ 7 M$_{rm odot}$ with a Galactic rest-frame radial velocity of 502 km/s at a Galactocentric radius of ~ 21 kpc and a B7V type star of ~ 4 M$_{rm odot}$ with a Galactic rest-frame radial velocity of 408 km/s at a Galactocentric radius of ~ 30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurements accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraint on understanding the nature of HVSs and their ejection mechanisms.



قيم البحث

اقرأ أيضاً

We report the first hypervelocity star (HVS) discovered from the LAMOST spectroscopic survey. It is a B-type star with a heliocentric radial velocity about 620 km/s, which projects to a Galactocentric radial velocity component of ~477 km/s. With a he liocentric distance of ~13 kpc and an apparent magnitude of ~13 mag, it is the nearest bright HVS currently known. With a mass of ~9Msun, it is one of the three most massive HVSs discovered so far. The star is clustered on the sky with many other known HVSs, with the position suggesting a possible connection to Galactic center structures. With the current poorly-determined proper motion, a Galactic center origin of this HVS remains consistent with the data at the 1sigma level, while a disk run-away origin cannot be excluded. We discuss the potential of the LAMOST survey to discover a large statistical sample of HVSs of different types.
With the photometric data from the SDSS survey, the spectroscopic data from the SDSS/SEGUE and the LAMOST surveys, and the astrometric data from the Gaia DR2, we have identified 71 highly-probable member stars of the GD-1 cold stellar stream spread a long almost its entire length (i.e. from 126 to 203 degree in Right Ascension). With the accurate spectroscopic (i.e. metallicity and line-of-sight velocity) and astrometric (i.e. proper motions) information, the position-velocity diagrams, i.e. $phi_{1}$-$mu_{alpha}$, $phi_{1}$-$mu_{delta}$ and $phi_{1}$-${v_{rm gsr}}$, of the GD-1 stream are well mapped. The stream has an average metallicity [Fe/H] $= -1.95 pm 0.23$. The rich information of member stars of the stream now available allow one not only to model its origin, but also to place strong constraints on the mass distribution and the gravitational potential of the Milky Way.
83 - Cuihua Du , Hefan Li , Yepeng Yan 2019
Base on about 4,500 large tangential velocity ($V_mathrm{tan}>0.75V_mathrm{esc}$) with high-precision proper motions and $5sigma$ parallaxes in Gaia DR2 5D information derived from parallax and proper motion, we identify more than 600 high velocity s tars with $50%$ unbound probability. Of these, 28 nearby (less than 6 kpc) late-type Hypervelocity stars (HVSs) with over $99%$ possibility of unbound are discovered. In order to search for the unbound stars from the full Gaia DR2 6D phase space information derived from parallax, proper motion and radial velocity, we also identify 28 stars from the total velocity ($V_mathrm{gc}>0.75V_mathrm{esc}$) that have probabilities greater than $50%$ of being unbound from the Galaxy. Of these, only three have a nearly $99%$ probabilities of being unbound. On the whole HVSs subsample, there is 12 sources reported by other surveys. We study the spatial distribution of angular positions and angular separation of HVSs. We find the unbound HVSs are spatially anisotropic that is most significant in the Galactic longitude at more than $3sigma$ level, and lower unbound probability HVSs are systematically more isotropic. The spatial distribution can reflect the origin of HVSs and we discuss the possible origin link with the anisotropy.
Two Li-rich candidates, TYC 1338-1410-1 and TYC 2825-596-1, were observed with the new high-resolution echelle spectrograph, LAMOST/HRS. Based on the high-resolution and high-signal-to-noise ratio (SNR) spectra, we derived stellar parameters and abun dances of 14 important elements for the two candidates. The stellar parameters and lithium abundances indicate that they are Li-rich K-type giants, and they have A(Li)$_mathrm{NLTE}$ of 1.77 and 2.91 dex, respectively. Our analysis suggests that TYC 1338-1410-1 is likely a red giant branch (RGB) star at the bump stage, while TYC 2825-596-1 is most likely a core helium-burning red clump (RC) star. The line profiles of both spectra indicate that the two Li-rich giants are slow rotators and do not show infrared (IR) excess. We conclude that engulfment is not the lithium enrichment mechanism for either star. The enriched lithium of TYC 1338-1410-1 could be created via Cameron-Fowler mechanism, while the lithium excess in TYC 2825-596-1 could be associated with either non-canonical mixing processes or He-flash.
We present 22,901 OB spectra of 16,032 stars identified from LAMOST DR5 dataset. A larger sample of OB candidates are firstly selected from the distributions in the spectral line indices space. Then all 22,901 OB spectra are identified by manual insp ection. Based on a sub-sample validation, we find that the completeness of the OB spectra reaches about $89pm22$% for the stars with spectral type earlier than B7, while around $57pm16$% B8--B9 stars are identified. The smaller completeness for late B stars is lead to the difficulty to discriminate them from A0--A1 type stars. The sub-classes of the OB samples are determined using the software package MKCLASS. With a careful validation using 646 sub-samples, we find that MKCLASS can give fairly reliable sub-types and luminosity class for most of the OB stars. The uncertainty of the spectral sub-type is around 1 sub-type and the uncertainty of the luminosity class is around 1 level. However, about 40% of the OB stars are failed to be assigned to any class by MKCLASS and a few spectra are significantly misclassified by MKCLASS. This is likely because that the template spectra of MKCLASS are selected from nearby stars in the solar neighborhood, while the OB stars in this work are mostly located in the outer disk and may have lower metallicity. The rotation of the OB stars may also be responsible for the mis-classifications. Moreover, we find that the spectral and luminosity classes of the OB stars located in the Galactic latitude larger than 20$^circ$ are substantially different with those located in latitude smaller than 20$^circ$, which may either due to the observational selection effect or hint a different origin of the high Galactic latitude OB stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا