ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) molybdenum disulfide (MoS2) has attracted significant attention because of its outstanding properties, suitable for application in several critical technologies like, solar cells, photocatalysis, lithium-ion batteries, nanoelectronics, and electrocatalysis. Similar to graphene and other 2D materials, the physical and chemical properties of MoS2 can be tuned by the chemical functionalization and defects. In this investigation, our objective is to explore the mechanical properties of single-layer MoS2 functionalized by the hydrogen atoms. We moreover analyze the effects of different types of defects on the mechanical response of MoS2 at the room temperature. To investigate these systems, we conducted reactive molecular dynamics simulations using the ReaxFF forcefield. We demonstrate that an increase in the hydrogen adatoms or defects contents significantly affects the critical mechanical characteristics of MoS2, elastic modulus, tensile strength, stretchability and failure behavior. Our reactive molecular dynamics results provide useful information concerning the mechanical response of hydrogenated and defective MoS2 and the design of nanodevices.
Hydrogenated diamond has been regarded as a promising material in electronic device applications, especially in field-effect transistors (FETs). However, the quality of diamond hydrogenation has not yet been established, nor has the specific orientat
Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylin
Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly-interconverting states. Here we build upon diffusion map theory and define a kinetic distance for irreducible Marko
Ab initio molecular dynamics simulations using VASP was employed to calculate threshold displacement energies and defect formation energies of Y4Zr3O12 {delta}-phase, which is the most commonly found phase in newly developed Zr and Al-containing ODS
Molecular dynamics (MD) simulation is a powerful computational tool to study the behavior of macromolecular systems. But many simulations of this field are limited in spatial or temporal scale by the available computational resource. In recent years,