ترغب بنشر مسار تعليمي؟ اضغط هنا

Searches for New Particles Including Dark Matter with Atomic, Molecular and Optical Systems

56   0   0.0 ( 0 )
 نشر من قبل Yevgeny Stadnik
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New particles can manifest their effects in many settings, ranging from effects on sub-atomic to galactic length scales. The nature of these effects depends on the specific particles and their non-gravitational interactions. In this chapter, we give a brief overview of how atomic, molecular and optical systems can be used to search for new particles. To illustrate the basic principles behind these methods, we focus on the simplest class of particles, namely new spinless bosons.



قيم البحث

اقرأ أيضاً

We report new limits on ultralight scalar dark matter (DM) with dilaton-like couplings to photons that can induce oscillations in the fine-structure constant alpha. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in alpha. Spectroscopy data for two isotopes of dysprosium over a two-year span is analyzed for coherent oscillations with angular frequencies below 1 rad/s. No signal consistent with a DM coupling is identified, leading to new constraints on dilaton-like photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3 * 10^-18 eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.
166 - A. Derevianko , M. Pospelov 2013
The cosmological applications of atomic clocks so far have been limited to searches of the uniform-in-time drift of fundamental constants. In this paper, we point out that a transient in time change of fundamental constants can be induced by dark mat ter objects that have large spatial extent, and are built from light non-Standard Model fields. The stability of this type of dark matter can be dictated by the topological reasons. We point out that correlated networks of atomic clocks, some of them already in existence, can be used as a powerful tool to search for the topological defect dark matter, thus providing another important fundamental physics application to the ever-improving accuracy of atomic clocks. During the encounter with a topological defect, as it sweeps through the network, initially synchronized clocks will become desynchronized. Time discrepancies between spatially-separated clocks are expected to exhibit a distinct signature, encoding defects space structure and its interaction strength with the Standard Model fields.
We report on the first earth-scale quantum sensor network based on optical atomic clocks aimed at dark matter (DM) detection. Exploiting differences in the susceptibilities to the fine-structure constant of essential parts of an optical atomic clock, i.e. the cold atoms and the optical reference cavity, we can perform sensitive searches for dark matter signatures without the need of real-time comparisons of the clocks. We report a two orders of magnitude improvement in constraints on transient variations of the fine-structure constant, which considerably improves the detection limit for the standard model (SM) - DM coupling. We use Yb and Sr optical atomic clocks at four laboratories on three continents to search for both topological defect (TD) and massive scalar field candidates. No signal consistent with a dark-matter coupling is identified, leading to significantly improved constraints on the DM-SM couplings.
77 - Laura Baudis 2015
One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of gal axies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultra low-background detectors, or indirectly, via secondary radiation produced when they pair annihilate. They could also be generated at particle colliders such as the LHC, where associated particles produced in the same process are to be detected. After a brief motivation and an introduction to the phenomenology of particle dark matter detection, I will discuss the most promising experimental techniques to search for axions and WIMPs, addressing their current and future science reach, as well as their complementarity.
Identifying the nature of dark matter (DM) has long been a pressing question for particle physics. In the face of ever-more-powerful exclusions and null results from large-exposure searches for TeV-scale DM interacting with nuclei, a significant amou nt of attention has shifted to lighter (sub-GeV) DM candidates. Direct detection of the light dark matter in our galaxy by observing DM scattering off a target system requires new approaches compared to prior searches. Lighter DM particles have less available kinetic energy, and achieving a kinematic match between DM and the target mandates the proper treatment of collective excitations in condensed matter systems, such as charged quasiparticles or phonons. In this context, the condensed matter physics of the target material is crucial, necessitating an interdisciplinary approach. In this review, we provide a self-contained introduction to direct detection of keV-GeV DM with condensed matter systems. We give a brief survey of dark matter models and basics of condensed matter, while the bulk of the review deals with the theoretical treatment of DM-nucleon and DM-electron interactions. We also review recent experimental developments in detector technology, and conclude with an outlook for the field of sub-GeV DM detection over the next decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا