ﻻ يوجد ملخص باللغة العربية
In this paper we have investigated some properties of the power graph and commuting graph associated with a finite group, using their tree-numbers. Among other things, it has been shown that the simple group $L_2(7)$ can be characterized through the tree-number of its power graph. Moreover, the classification of groups with power-free decomposition is presented. Finally, we have obtained an explicit formula concerning the tree-number of commuting graphs associated with the Suzuki simple groups.
The power graph $mathcal{P}(G)$ of a finite group $G$ is the graph whose vertex set is $G$, and two elements in $G$ are adjacent if one of them is a power of the other. The purpose of this paper is twofold. First, we find the complexity of a clique--
In this paper we study prime graphs of finite groups. The prime graph of a finite group $G$, also known as the Gruenberg-Kegel graph, is the graph with vertex set {primes dividing $|G|$} and an edge $p$-$q$ if and only if there exists an element of o
Given a group $G$, we define the power graph $mathcal{P}(G)$ as follows: the vertices are the elements of $G$ and two vertices $x$ and $y$ are joined by an edge if $langle xranglesubseteq langle yrangle$ or $langle yranglesubseteq langle xrangle$. Ob
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$. We say that $H$ is s-semipermutable in $G$ if $HG_p = G_pH$ for any Sylow $p$-subgroup $G_p$ of $G$ with $(p, |H|) = 1$. We investigate the influence of s-semipermutable subgroups on th
Let $G$ be a finite group and $sigma$ a partition of the set of all? primes $Bbb{P}$, that is, $sigma ={sigma_i mid iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_i$ and $sigma_icap sigma_j= emptyset $ for all $i e j$. If $n$ is an integer, we write $s