ﻻ يوجد ملخص باللغة العربية
A superconductor/normal metal/superconductor Josephson junction is a coherent electron system where the thermodynamic entropy depends on temperature and phase difference across the weak-link. Here, exploiting the phase-temperature thermodynamic diagram of a thermally isolated system, we argue that a cooling effect can be achieved when the phase drop across the junction is brought from 0 to $pi$ in a iso-entropic process. We show that iso-entropic cooling can be enhanced with proper choice of geometrical and electrical parameters of the junction, i.e. by increasing the ratio between supercurrent and total junction volume. We present extensive numerical calculations using quasi-classical Green function methods for a short junction and we compare them with analytical results. Interestingly, we demonstrate that phase-coherent thermodynamic cycles can be implemented by combining iso-entropic and iso-phasic processes acting on the weak-link, thereby engineering the coherent version of thermal machines such as engines and cooling systems. We therefore evaluate their performances and the minimum temperature achievable in a cooling cycle.
We theoretically investigate heat transport in temperature-biased Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat flux through th
Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is
We theoretically propose a phase-coherent thermal circulator based on ballistic multiterminal Josephson junctions. The breaking of time-reversal symmetry by either a magnetic flux or a superconducting phase bias allows heat to flow preferentially in
Interference of standing waves in electromagnetic resonators forms the basis of many technologies, from telecommunications and spectroscopy to detection of gravitational waves. However, unlike the confinement of light waves in vacuum, the interferenc
We study the physical mechanism of Maxwells Demon (MD) helping to do extra work in thermodynamic cycles, by describing measurement of position, insertion of wall and information erasing of MD in a quantum mechanical fashion. The heat engine is exempl