ﻻ يوجد ملخص باللغة العربية
Phosphorus abundance is crucial for DNA-based extraterrestrial life in exoplanets. Atomic data for observed spectral lines of P-ions are needed for its accurate determination. We present the first calculations for collision strengths for the forbidden PIII fine structure transition $3s^23p (^2P^o_{1/2-3/2})$ within the ground state at 17.9 $mu$m, as well as allowed UV transitions in the $3s^23p (^2P^o_{1/2,3/2}) rightarrow 3s3p^2 (^2D_{3/2,5/2}, ^2S_{1/2}, ^2P_{1/2,3/2})$ multiplets between 915-1345 $AA$. Collision strengths are computed using the Breit-Pauli R-Matrix method including the first 18 levels, and they exhibit extensive auto-ionizing resonance structures. In particular, the Maxwellian averaged effective collision strength for the FIR 17.9 $mu$m transition shows a factor 3 temperature variation broadly peaking at typical nebular temperatures. Its theoretical emissivity with solar phosphorus abundance is computed relative to H$beta$ and found to be similar to observed intensties from planetary nebulae; the abundances derived in earlier works are 3-5 times sub-solar. The results pertain to the reported paucity of phosphorus from preferred production sites in supernovae, and abundances in planetary nebulae and supernova remnants.
The treatment of the inelastic collisions with electrons and hydrogen atoms are the main source of uncertainties in non-Local Thermodynamic Equilibrium (LTE) spectral line computations. We report, in this research note, quantum mechanical data for 36
We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T(K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels
We present electron collision strengths and their thermally averaged values for the forbidden lines of the astronomically abundant doubly-ionized oxygen ion, O^{2+}, in an intermediate coupling scheme using the Breit-Pauli relativistic terms as imple
For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atom
Far-infrared and optical [O III] lines are useful temeprature-density diagnostics of nebular as well as dust obscured astrophysical sources. Fine structure transitions among the ground state levels 1s^22s^22p^3 ^3P_{0,1,2} give rise to the 52 and 88