ﻻ يوجد ملخص باللغة العربية
We study the radiative and semileptonic B decays involving a spin-$J$ resonant $K_J^{(*)}$ with parity $(-1)^J$ for $K_J^*$ and $(-1)^{J+1}$ for $K_J$ in the final state. Using the large energy effective theory (LEET) techniques, we formulate $B to K_J^{(*)}$ transition form factors in the large recoil region in terms of two independent LEET functions $zeta_perp^{K_J^{(*)}}$ and $zeta_parallel^{K_J^{(*)}}$, the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, $zeta_{perp,parallel}^{K_J^{(*)}}$ exhibit a dipole dependence in $q^2$. We predict the decay rates for $B to K_J^{(*)} gamma$, $B to K_J^{(*)} ell^+ ell^-$ and $B to K_J^{(*)} u bar{ u}$. The branching fractions for these decays with higher $K$-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of $zeta^{K_J^{(*)}}_{perp,parallel}$. Furthermore, if the spin of $K_J^{(*)}$ becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch-Gordan coefficients defined by the polarization tensors of the $K_J^{(*)}$. We also calculate the forward backward asymmetry of the $B to K_J^{(*)} ell^+ ell^-$ decay, for which the zero is highly insensitive to the $K$-resonances in the LEET parametrization.
Two of the elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix, $|V_{ub}|$ and $|V_{cb}|$, are extracted from semileptonic B decays. The results of the B factories, analysed in the light of the most recent theoretical calculations, remain p
We review some recent progress in the theory of electroweak radiative corrections in semileptonic decay processes. The resurrection of the so-called Sirlins representation based on current algebra relations permits a clear separation between the pert
We evaluate the non-resonant decay amplitude of the process $B^pmto K^pmpi^+ pi^-$ using an approach based on final state hadronic interactions described in terms of meson exchanges. We conclude that this mechanism generates inhomogeneities in the Dalitz plot of the B decay.
With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main ave
We consider leptonic $B^-to ell^- bar u_ell$ and semileptonic $bar B to pi ell^- bar u_ell$, $bar B to rho ell^- bar u_ell$ decays and present a strategy to determine short-distance coefficients of New-Physics operators and the CKM element $|V_{ub}|$