ﻻ يوجد ملخص باللغة العربية
In this paper, we report an experiment about the device-independent tests of classical and quantum entropy based on a recent proposal [Phys. Rev. Lett. 115, 110501 (2015)], in which the states are encoded on the polarization of a biphoton system and measured by the state tomography technology. We also theoretically obtained the minimal quantum entropy for three widely used linear dimension witnesses. The experimental results agree well with the theoretical analysis, demonstrating that lower entropy is needed in quantum systems than that in classical systems under given values of the dimension witness.
Quantum tomography is currently the mainly employed method to assess the information of a system and therefore plays a fundamental role when trying to characterize the action of a particular channel. Nonetheless, quantum tomography requires the trust
We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the commu
Bell nonlocality between distant quantum systems---i.e., joint correlations which violate a Bell inequality---can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure p
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-pr
We propose and experimentally implement a novel reconfigurable quantum key distribution (QKD) scheme, where the users can switch in real time between conventional QKD and the recently-introduced measurement-device-independent (MDI) QKD. Through this