ترغب بنشر مسار تعليمي؟ اضغط هنا

Producing radiologist-quality reports for interpretable artificial intelligence

235   0   0.0 ( 0 )
 نشر من قبل Luke Oakden-Rayner
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current approaches to explaining the decisions of deep learning systems for medical tasks have focused on visualising the elements that have contributed to each decision. We argue that such approaches are not enough to open the black box of medical decision making systems because they are missing a key component that has been used as a standard communication tool between doctors for centuries: language. We propose a model-agnostic interpretability method that involves training a simple recurrent neural network model to produce descriptive sentences to clarify the decision of deep learning classifiers. We test our method on the task of detecting hip fractures from frontal pelvic x-rays. This process requires minimal additional labelling despite producing text containing elements that the original deep learning classification model was not specifically trained to detect. The experimental results show that: 1) the sentences produced by our method consistently contain the desired information, 2) the generated sentences are preferred by doctors compared to current tools that create saliency maps, and 3) the combination of visualisations and generated text is better than either alone.

قيم البحث

اقرأ أيضاً

Can reproduction alone in the context of survival produce intelligence in our machines? In this work, self-replication is explored as a mechanism for the emergence of intelligent behavior in modern learning environments. By focusing purely on surviva l, while undergoing natural selection, evolved organisms are shown to produce meaningful, complex, and intelligent behavior, demonstrating creative solutions to challenging problems without any notion of reward or objectives. Atari and robotic learning environments are re-defined in terms of natural selection, and the behavior which emerged in self-replicating organisms during these experiments is described in detail.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
There is a significant lack of unified approaches to building generally intelligent machines. The majority of current artificial intelligence research operates within a very narrow field of focus, frequently without considering the importance of the big picture. In this document, we seek to describe and unify principles that guide the basis of our development of general artificial intelligence. These principles revolve around the idea that intelligence is a tool for searching for general solutions to problems. We define intelligence as the ability to acquire skills that narrow this search, diversify it and help steer it to more promising areas. We also provide suggestions for studying, measuring, and testing the various skills and abilities that a human-level intelligent machine needs to acquire. The document aims to be both implementation agnostic, and to provide an analytic, systematic, and scalable way to generate hypotheses that we believe are needed to meet the necessary conditions in the search for general artificial intelligence. We believe that such a framework is an important stepping stone for bringing together definitions, highlighting open problems, connecting researchers willing to collaborate, and for unifying the arguably most significant search of this century.
249 - Han Yu , Zhiqi Shen , Chunyan Miao 2018
As artificial intelligence (AI) systems become increasingly ubiquitous, the topic of AI governance for ethical decision-making by AI has captured public imagination. Within the AI research community, this topic remains less familiar to many researche rs. In this paper, we complement existing surveys, which largely focused on the psychological, social and legal discussions of the topic, with an analysis of recent advances in technical solutions for AI governance. By reviewing publications in leading AI conferences including AAAI, AAMAS, ECAI and IJCAI, we propose a taxonomy which divides the field into four areas: 1) exploring ethical dilemmas; 2) individual ethical decision frameworks; 3) collective ethical decision frameworks; and 4) ethics in human-AI interactions. We highlight the intuitions and key techniques used in each approach, and discuss promising future research directions towards successful integration of ethical AI systems into human societies.
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are, how they come to exist, and how a system behaves when it uses them. We begin by offering an interpretation of symbols as entities whose meaning is established by convention. But crucially, something is a symbol only for those who demonstrably and actively participate in this convention. We then outline how this interpretation thematically unifies the behavioural traits humans exhibit when they use symbols. This motivates our proposal that the field place a greater emphasis on symbolic behaviour rather than particular computational mechanisms inspired by more restrictive interpretations of symbols. Finally, we suggest that AI research explore social and cultural engagement as a tool to develop the cognitive machinery necessary for symbolic behaviour to emerge. This approach will allow for AI to interpret something as symbolic on its own rather than simply manipulate things that are only symbols to human onlookers, and thus will ultimately lead to AI with more human-like symbolic fluency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا