ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the manipulation of topological states of matter: A perspective from electron transport

219   0   0.0 ( 0 )
 نشر من قبل Faxian Xiu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The introduction of topological invariants, ranging from insulators to metals, has provided new insights into the traditional classification of electronic states in condensed matter physics. A sudden change in the topological invariant at the boundary of a topological nontrivial system leads to the formation of exotic surface states that are dramatically different from its bulk. In recent years, significant advancements in the exploration of the physical properties of these topological systems and regarding device research related to spintronics and quantum computation have been made. Here, we review the progress of the characterization and manipulation of topological phases from the electron transport perspective and also the intriguing chiral/Majorana states that stem from them. We then discuss the future directions of research into these topological states and their potential applications.



قيم البحث

اقرأ أيضاً

135 - K. Nakayama , K. Eto , Y. Tanaka 2012
We have performed angle-resolved photoemission spectroscopy on (PbSe)5(Bi2Se3)3m, which forms a natural multilayer heterostructure consisting of a topological insulator (TI) and an ordinary insulator. For m = 2, we observed a gapped Dirac-cone state within the bulk-band gap, suggesting that the topological interface states are effectively encapsulated by block layers; furthermore, it was found that the quantum confinement effect of the band dispersions of Bi2Se3 layers enhances the effective bulk-band gap to 0.5 eV, the largest ever observed in TIs. In addition, we found that the system is no longer in the topological phase at m = 1, pointing to a topological phase transition between m = 1 and 2. These results demonstrate that utilization of naturally-occurring heterostructures is a new promising strategy for realizing exotic quantum phenomena and device applications of TIs.
Valley polarized topological kink states, existing broadly in the domain wall of hexagonal lattices systems, are identified in experiments, unfortunately, only very limited physical properties being given. Using an Aharanov-Bohm interferometer compos ed of domain walls in graphene systems, we study the periodical modulation of pure valley current in a large range by tuning the magnetic field or the Fermi level. For monolayer graphene device, there exists one topological kink state, and the oscillation of transmission coefficients have single period. The $pi$ Berry phase and the linear dispersion relation of kink states can be extracted from the transmission data. For bilayer graphene device, there are two topological kink states with two oscillation periods. Our proposal provides an experimental feasible route to manipulate and characterize the valley polarized topological kink states in classical wave and electronic graphene-type crystalline systems.
Topological insulators (TIs) are new insulating materials with exotic surface states, where the motion of charge carriers is described by the Dirac equations and their spins are locked in a perpendicular direction to their momentum. Recent studies by angle-resolved photoemission spectroscopy have demonstrated that a conventional two-dimensional electron gas can coexist with the topological surface state due to the quantum confinement effect. The coexistence is expected to give rise to exotic transport properties, which, however, have not been explored so far. Here, we report a magneto-transport study on single crystals of the topological insulator BiSbTe3. Besides Shubnikov-de Haas oscillations and weak anti-localization (WAL) from the topological surface state, we also observed a crossover from the weak anti-localization to weak localization (WL) with increasing magnetic field, which is temperature dependent and exhibits two-dimensional features. The crossover is proposed to be the transport manifestation of the coexistence of the topological surface state and two-dimensional electron gas on the surface of TIs.
291 - C. Brune , C.X. Liu , E.G. Novik 2011
We report transport studies on a three dimensional, 70 nm thick HgTe layer, which is strained by epitaxial growth on a CdTe substrate. The strain induces a band gap in the otherwise semi-metallic HgTe, which thus becomes a three dimensional topologic al insulator. Contributions from residual bulk carriers to the transport properties of the gapped HgTe layer are negligible at mK temperatures. As a result, the sample exhibits a quantized Hall effect that results from the 2D single cone Dirac-like topological surface states.
In spintronic devices, the two main approaches to actively control the electrons spin degree of freedom involve either static magnetic or electric fields. An alternative avenue relies on the application of optical fields to generate spin currents, wh ich promises to bolster spin-device performance allowing for significantly faster and more efficient spin logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin splitting. Here, to explore the all-optical manipulation of a materials spin properties, we consider the Rashba effect at a semiconductor interface. The Rashba effect has long been a staple in the field of spintronics owing to its superior tunability, which allows the observation of fully spin-dependent phenomena, such as the spin-Hall effect, spin-charge conversion, and spin-torque in semiconductor devices. In this work, by means of time and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an ultrafast optical excitation can be used to manipulate the Rashba-induced spin splitting of a two-dimensional electron gas (2DEG) engineered at the surface of the topological insulator Bi$_{2}$Se$_{3}$. We establish that light-induced photovoltage and charge carrier redistribution -- which in concert modulate the spin-orbit coupling strength on a sub-picosecond timescale -- can offer an unprecedented platform for achieving all optically-driven THz spin logic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا