ﻻ يوجد ملخص باللغة العربية
We present a comparison of high-resolution, integrated-light, detailed chemical abundances for Galactic and extragalactic globular clusters in both massive galaxies and dwarf galaxies. We include measurements of Fe, Ca, Si, Na, and Al for globular cluster samples in the Milky Way, M31, Large Magellanic Cloud, and NGC 5128. These and other recent results from our group on M31 and NGC 5128 are the first chemical abundances derived from discrete absorption features in old stars beyond the Milky Way and its nearest neighbors. These abundances can provide both galaxy enrichment histories and constraints on globular cluster formation and evolution.
We report the first detailed chemical abundances for 5 globular clusters (GCs) in M31 from high-resolution (R ~ 25,000) spectroscopy of their integrated light. These GCs are the first in a larger set of clusters observed as part of an ongoing project
Spectrum syntheses for three elements (Mg, Na, and Eu) in high-resolution integrated light spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006, and M15 are presented, along with calibration syntheses of the Solar and Arcturus spectra.
In this paper we refine our method for the abundance analysis of high resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old ($>$10 Gyr) Milky Way GCs. He
We investigate the multiple stellar populations of the globular clusters M3, M5, M13, and M71 using $g^prime$ and intermediate-band CN-$lambda 3883$ photometry obtained with the WIYN 0.9-m telescope on Kitt Peak. We find a strong correlation between
In the last decade, a new kind of stellar systems has been established that shows properties in between those of globular clusters (GCs) and early-type dwarf galaxies. These so-called ultra-compact dwarf galaxies (UCDs) have masses in the range 10^6