ﻻ يوجد ملخص باللغة العربية
A mysterious incoherent metallic (IM) normal state with $T$-linear resistivity is ubiquitous among strongly correlated superconductors. Recent progress with microscopic models exhibiting IM transport has presented the opportunity for us to study new models that exhibit direct transitions into a superconducting state out of IM states within the framework of connected Sachdev-Ye-Kitaev (SYK) quantum dots. Here local SYK interactions within a dot produce IM transport in the normal state, while local attractive interactions drive superconductivity. Through explicit calculations, we find two features of superconductivity arising from an IM normal state: First, despite the absence of quasiparticles in the normal state, the superconducting state still exhibits coherent superfluid transport. Second, the non-quasiparticle nature of the IM Greens functions produces a large enhancement in the ratio of the zero-temperature superconducting gap $Delta$ and transition temperature $T_{sc}$, $2Delta/T_{sc}$, with respect to its BCS value of $3.53$.
The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For $kappa$-(BEDT-TTF)$_2$I$_3$ we find a well-resolved peak in the angle-dep
We study a model of $N$ fermions in a quantum dot, coupled to $M$ bosons by a disorder-induced complex Yukawa coupling (Yukawa-SYK model), in order to explore the interplay between non-Fermi liquid and superconductivity in a strongly coupled, (quantu
Strong spin-orbit interaction in the two dimensional compound Sr2IrO4 leads to the formation of Jeff=1/2 isospins with unprecedented dynamics. In Raman scattering a continuum attributed to double spin scattering is observed. With higher excitation en
Significant effort has been devoted to the study of non-Fermi liquid (NFL) metals: gapless conducting systems that lack a quasiparticle description. One class of NFL metals involves a finite density of fermions interacting with soft order parameter f
Exact calculations of collective excitations and charge/spin (pseudo)gaps in an ensemble of bipartite and nonbipartite clusters yield level crossing degeneracies, spin-charge separation, condensation and recombination of electron charge and spin, dri