ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron coherent and incoherent pairing instabilities in inhomogeneous bipartite and nonbipartite nanoclusters

225   0   0.0 ( 0 )
 نشر من قبل Armen Kocharian
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exact calculations of collective excitations and charge/spin (pseudo)gaps in an ensemble of bipartite and nonbipartite clusters yield level crossing degeneracies, spin-charge separation, condensation and recombination of electron charge and spin, driven by interaction strength, inter-site couplings and temperature. Near crossing degeneracies, the electron configurations of the lowest energies control the physics of electronic pairing, phase separation and magnetic transitions. Rigorous conditions are found for the smooth and dramatic phase transitions with competing stable and unstable inhomogeneities. Condensation of electron charge and spin degrees at various temperatures offers a new mechanism of pairing and a possible route to superconductivity in inhomogeneous systems, different from the BCS scenario. Small bipartite and frustrated clusters exhibit charge and spin inhomogeneities in many respects typical for nano and heterostructured materials. The calculated phase diagrams in various geometries may be linked to atomic scale experiments in high T$_c$ cuprates, manganites and other concentrated transition metal oxides.



قيم البحث

اقرأ أيضاً

Electron pairing and ferromagnetism in various cluster geometries are studied with emphasis on tetrahedron and square pyramid under variation of interaction strength, electron doping and temperature. These exact calculations of charge and spin collec tive excitations and pseudogaps yield intriguing insights into level crossing degeneracies, phase separation and condensation. Criteria for spin-charge separation and reconciliation driven by interaction strength, next nearest coupling and temperature are found. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen recently in high T$_c$ cuprates, manganites and CMR nanomaterials.
Spontaneous phase separation instabilities with the formation of various types of charge and spin pairing (pseudo)gaps in $U>0$ Hubbard model including the {it next nearest neighbor coupling} are calculated with the emphasis on the two-dimensional (s quare) lattices generated by 8- and 10-site Betts unit cells. The exact theory yields insights into the nature of quantum critical points, continuous transitions, dramatic phase separation instabilities and electron condensation in spatially inhomogeneous systems. The picture of coupled anti-parallel (singlet) spins and paired charged holes suggests full Bose condensation and coherent pairing in real space at zero temperature of electrons complied with the Bose-Einstein statistics. Separate pairing of charge and spin degrees at distinct condensation temperatures offers a new route to superconductivity different from the BCS scenario. The conditions for spin liquid behavior coexisting with unsaturated and saturated Nagaoka ferromagnetism due to spin-charge separation are established. The phase separation critical points and classical criticality found at zero and finite temperatures resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen near optimally doped high-$T_c$ cuprates, pnictides and CMR nanomaterials.
The exact numerical diagonalization and thermodynamics in an ensemble of small Hubbard clusters in the ground state and finite temperatures reveal intriguing insights into the nascent charge and spin pairings, Bose condensation and ferromagnetism in nanoclusters. The phase diagram off half filling strongly suggests the existence of subsequent transitions from electron pairing into unsaturated and saturated ferromagnetic Mott-Hubbard like insulators, driven by electron repulsion. Rigorous criteria for the existence of quantum critical points in the ground state and corresponding crossovers at finite temperatures are formulated. The phase diagram for 2x4-site clusters illustrates how these features are scaled with cluster size. The phase separation and electron pairing, monitored by a magnetic field and electron doping, surprisingly resemble phase diagrams in the family of doped high Tc cuprates.
There is growing evidence that the unconventional spatial inhomogeneities in the doped high-Tc superconductors are accompanied by the pairing of electrons, subsequent quantum phase transitions (QPTs), and condensation in coherent states. We show that these superconducting states can be obtained from phase separation instabilities near the quantum critical points. We examine electron coherent and incoherent pairing instabilities using our results on exact diagonalization in pyramidal and octahedron Hubbard-like clusters under variation of chemical potential (or doping), interaction strength, temperature and magnetic field. We also evaluate the behavior of the energy gap in the vicinity of its sign change as a function of out-of-plane position of the apical oxygen atom, due to vibration of apical atom and variation of inter-site coupling. These results provide a simple microscopic explanation of (correlation induced) supermodulation of the coherent pairing gap observed recently in the scanning tunneling microscopy experiments at atomic scale in $Bi_2Sr_2CaCu_2O_{8+delta}$. The existence of possible modulation of local charge density distribution in these materials is also discussed.
The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For $kappa$-(BEDT-TTF)$_2$I$_3$ we find a well-resolved peak in the angle-dep endent magnetoresistance at $Theta = 90^circ$ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for $beta$-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا