ﻻ يوجد ملخص باللغة العربية
Generating correlated photon pairs at the nanoscale is a prerequisite to creating highly integrated optoelectronic circuits that perform quantum computing tasks based on heralded single-photons. Here we demonstrate fulfilling this requirement with a generic tip-surface metal junction. When the junction is luminescing under DC bias, inelastic tunneling events of single electrons produce a photon stream in the visible spectrum whose super-bunching index is 17 when measured with a 53 picosecond instrumental resolution limit. These photon bunches contain true photon pairs of plasmonic origin, distinct from accidental photon coincidences. The effect is electrically rather than optically driven - completely absent are pulsed lasers, down-
We consider a transmission line resonator which is driven by electrons tunneling through a voltage-biased tunnel junction. Using the Born-Markovian quantum master equation in the polaron basis we investigate the nonequilibrium photon state and emissi
We measure the current vs voltage (I-V) characteristics of a diodelike tunnel junction consisting of a sharp metallic tip placed at a variable distance d from a planar collector and emitting electrons via electric-field assisted emission. All curves
We propose a low-temperature thermal rectifier consisting of a chain of three tunnel-coupled normal metal electrodes. We show that a large heat rectification is achievable if the thermal symmetry of the structure is broken and the central island can
We propose a conceptually new way to gather information on the electron bands of buried metal(semiconductor)/insulator interfaces. The bias dependence of low frequency noise in Fe$_{1-x}$V$_{x}$/MgO/Fe (0 $<$ x $<$ 0.25) tunnel junctions show clear a
We consider a tunnel junction formed between a fixed electrode and an oscillating one. Accumulation of the charge on the junction capacitor induces a force on the nano-mechanical oscillator. The junction is voltage biased and connected in series with