ﻻ يوجد ملخص باللغة العربية
Consider the restriction of an irreducible unitary representation $pi$ of a Lie group $G$ to its subgroup $H$. Kirillovs revolutionary idea on the orbit method suggests that the multiplicity of an irreducible $H$-module $ u$ occurring in the restriction $pi|_H$ could be read from the coadjoint action of $H$ on $O^G cap pr^{-1}(O^H)$ provided $pi$ and $ u$ are geometric quantizations of a $G$-coadjoint orbit $O^G$ and an $H$-coadjoint orbit $O^H$,respectively, where $pr: sqrt{-1} g^{ast} to sqrt{-1} h^{ast}$ is the projection dual to the inclusion $h subset g$ of Lie algebras. Such results were previously established by Kirillov, Corwin and Greenleaf for nilpotent Lie groups. In this article, we highlight specific elliptic orbits $O^G$ of a semisimple Lie group $G$ corresponding to highest weight modules of scalar type. We prove that the Corwin--Greenleaf number $sharp(O^G cap pr^{-1}(O^H))/H$ is either zero or one for any $H$-coadjoint orbit $O^H$, whenever $(G,H)$ is a symmetric pair of holomorphic type. Furthermore, we determine the coadjoint orbits $O^H$ with nonzero Corwin-Greenleaf number. Our results coincide with the prediction of the orbit philosophy, and can be seen as classical limits of the multiplicity-free branching laws of holomorphic discrete series representations (T.Kobayashi [Progr.Math.2007]).
A connected algebraic group Q defined over a field of characteristic zero is quasi-reductive if there is an element of its dual of reductive type, that is such that the quotient of its stabiliser by the centre of Q is a reductive subgroup of GL(q), w
Actions of $U(n)$ on $U(n+1)$ coadjoint orbits via embeddings of $U(n)$ into $U(n+1)$ are an important family of examples of multiplicity free spaces. They are related to Gelfand-Zeitlin completely integrable systems and multiplicity free branching r
We establish a Springer correspondence for classical symmetric pairs making use of Fourier transform, a nearby cycle sheaf construction and parabolic induction. In particular, we give an explicit description of character sheaves for classical symmetric pairs.
Coadjoint orbits and multiplicity free spaces of compact Lie groups are important examples of symplectic manifolds with Hamiltonian groups actions. Constructing action-angle variables on these spaces is a challenging task. A fundamental result in the
In this paper, we prove that any relative character (a.k.a. spherical character) of any admissible representation of a real reductive group with respect to any pair of spherical subgroups is a holonomic distribution on the group. This implies that th