ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-temporal modelling of forest monitoring data: Modelling German tree defoliation data collected between 1989 and 2015 for trend estimation and survey grid examination using GAMMs

202   0   0.0 ( 0 )
 نشر من قبل Nicole Augustin H
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatio-temporal modelling of tree defoliation data of German forest condition survey is presented. In the present study generalized additive mixed models were used to estimate the spatio-temporal trends of defoliation of the main tree species from 1989 to 2015 and to examine the suitability of different monitoring grid resolutions. Although data has been collected since 1989, this is the first time the spatio-temporal modelling for entire Germany has been carried out. Besides the space-time component, stand age showed a significant effect on defoliation. The mean age and the species-specific relation between defoliation and age determined the general level of defoliation whereas fluctuations of defoliation were primarily related to weather conditions. The study indicates a strong association between drought stress and defoliation of all four main tree species. Besides direct effects of weather conditions, indirect effects seem to play a further role. Defoliation of the comparably drought-tolerant species pine and oak was primarily affected by insect infestations following drought whereas considerable time for regeneration was required by beech following drought stress and recurring substantial fructification. South-eastern Germany has emerged as the region with the highest defoliation since the drought year 2003. This region was characterized by the strongest water deficits in 2003 compared to the long-term reference period. The present study gives evidence that the focus has moved from air pollution to climate change. Furthermore, the spatio-temporal model was used to carry out a simulation study to compare different survey grid resolutions. This grid examination indicated that an 8 x 8 km grid instead of the standard 16 x 16 km grid is necessary for spatio-temporal trend estimation and for detecting hot-spots in defoliation in space and time, especially regarding oak.



قيم البحث

اقرأ أيضاً

In this technical note, we address an unresolved challenge in neuroimaging statistics: how to determine which of several datasets is the best for inferring neuronal responses. Comparisons of this kind are important for experimenters when choosing an imaging protocol - and for developers of new acquisition methods. However, the hypothesis that one dataset is better than another cannot be tested using conventional statistics (based on likelihood ratios), as these require the data to be the same under each hypothesis. Here we present Bayesian data comparison, a principled framework for evaluating the quality of functional imaging data, in terms of the precision with which neuronal connectivity parameters can be estimated and competing models can be disambiguated. For each of several candidate datasets, neuronal responses are inferred using Dynamic Casual Modelling (DCM) - a commonly used Bayesian procedure for modelling neuroimaging data. Next, the parameters from subject-specific models are summarised at the group level using a Bayesian General Linear Model (GLM). A series of measures, which we introduce here, are then used to evaluate each dataset in terms of the precision of (group-level) parameter estimates and the ability of the data to distinguish similar models. To exemplify the approach, we compared four datasets that were acquired in a study evaluating multiband fMRI acquisition schemes. To enable people to reproduce these analyses using their own data and experimental paradigms, we provide general-purpose Matlab code via the SPM software.
Chromosome conformation capture experiments such as Hi-C are used to map the three-dimensional spatial organization of genomes. One specific feature of the 3D organization is known as topologically associating domains (TADs), which are densely intera cting, contiguous chromatin regions playing important roles in regulating gene expression. A few algorithms have been proposed to detect TADs. In particular, the structure of Hi-C data naturally inspires application of community detection methods. However, one of the drawbacks of community detection is that most methods take exchangeability of the nodes in the network for granted; whereas the nodes in this case, i.e. the positions on the chromosomes, are not exchangeable. We propose a network model for detecting TADs using Hi-C data that takes into account this non-exchangeability. In addition, our model explicitly makes use of cell-type specific CTCF binding sites as biological covariates and can be used to identify conserved TADs across multiple cell types. The model leads to a likelihood objective that can be efficiently optimized via relaxation. We also prove that when suitably initialized, this model finds the underlying TAD structure with high probability. Using simulated data, we show the advantages of our method and the caveats of popular community detection methods, such as spectral clustering, in this application. Applying our method to real Hi-C data, we demonstrate the domains identified have desirable epigenetic features and compare them across different cell types.
The celebrated Abakaliki smallpox data have appeared numerous times in the epidemic modelling literature, but in almost all cases only a specific subset of the data is considered. There is one previous analysis of the full data set, but this relies o n approximation methods to derive a likelihood. The data themselves continue to be of interest due to concerns about the possible re-emergence of smallpox as a bioterrorism weapon. We present the first full Bayesian analysis using data-augmentation Markov chain Monte Carlo methods which avoid the need for likelihood approximations. Results include estimates of basic model parameters as well as reproduction numbers and the likely path of infection. Model assessment is carried out using simulation-based methods.
The share of wind energy in total installed power capacity has grown rapidly in recent years around the world. Producing accurate and reliable forecasts of wind power production, together with a quantification of the uncertainty, is essential to opti mally integrate wind energy into power systems. We build spatio-temporal models for wind power generation and obtain full probabilistic forecasts from 15 minutes to 5 hours ahead. Detailed analysis of the forecast performances on the individual wind farms and aggregated wind power are provided. We show that it is possible to improve the results of forecasting aggregated wind power by utilizing spatio-temporal correlations among individual wind farms. Furthermore, spatio-temporal models have the advantage of being able to produce spatially out-of-sample forecasts. We evaluate the predictions on a data set from wind farms in western Denmark and compare the spatio-temporal model with an autoregressive model containing a common autoregressive parameter for all wind farms, identifying the specific cases when it is important to have a spatio-temporal model instead of a temporal one. This case study demonstrates that it is possible to obtain fast and accurate forecasts of wind power generation at wind farms where data is available, but also at a larger portfolio including wind farms at new locations. The results and the methodologies are relevant for wind power forecasts across the globe as well as for spatial-temporal modelling in general.
We introduce the univariate two--piece sinh-arcsinh distribution, which contains two shape parameters that separately control skewness and kurtosis. We show that this new model can capture higher levels of asymmetry than the original sinh-arcsinh dis tribution (Jones and Pewsey, 2009), in terms of some asymmetry measures, while keeping flexibility of the tails and tractability. We illustrate the performance of the proposed model with real data, and compare it to appropriate alternatives. Although we focus on the study of the univariat
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا