ﻻ يوجد ملخص باللغة العربية
The celebrated Abakaliki smallpox data have appeared numerous times in the epidemic modelling literature, but in almost all cases only a specific subset of the data is considered. There is one previous analysis of the full data set, but this relies on approximation methods to derive a likelihood. The data themselves continue to be of interest due to concerns about the possible re-emergence of smallpox as a bioterrorism weapon. We present the first full Bayesian analysis using data-augmentation Markov chain Monte Carlo methods which avoid the need for likelihood approximations. Results include estimates of basic model parameters as well as reproduction numbers and the likely path of infection. Model assessment is carried out using simulation-based methods.
In the political decision process and control of COVID-19 (and other epidemic diseases), mathematical models play an important role. It is crucial to understand and quantify the uncertainty in models and their predictions in order to take the right d
Infectious diseases on farms pose both public and animal health risks, so understanding how they spread between farms is crucial for developing disease control strategies to prevent future outbreaks. We develop novel Bayesian nonparametric methodolog
Topic modeling is a popular method used to describe biological count data. With topic models, the user must specify the number of topics $K$. Since there is no definitive way to choose $K$ and since a true value might not exist, we develop techniques
In this paper, we study porous media flows in heterogeneous stochastic media. We propose an efficient forward simulation technique that is tailored for variational Bayesian inversion. As a starting point, the proposed forward simulation technique dec
Arterial Spin Labelling (ASL) functional Magnetic Resonance Imaging (fMRI) data provides a quantitative measure of blood perfusion, that can be correlated to neuronal activation. In contrast to BOLD measure, it is a direct measure of cerebral blood f