ﻻ يوجد ملخص باللغة العربية
Particle filtering is a powerful approach to sequential state estimation and finds application in many domains, including robot localization, object tracking, etc. To apply particle filtering in practice, a critical challenge is to construct probabilistic system models, especially for systems with complex dynamics or rich sensory inputs such as camera images. This paper introduces the Particle Filter Network (PFnet), which encodes both a system model and a particle filter algorithm in a single neural network. The PF-net is fully differentiable and trained end-to-end from data. Instead of learning a generic system model, it learns a model optimized for the particle filter algorithm. We apply the PF-net to a visual localization task, in which a robot must localize in a rich 3-D world, using only a schematic 2-D floor map. In simulation experiments, PF-net consistently outperforms alternative learning architectures, as well as a traditional model-based method, under a variety of sensor inputs. Further, PF-net generalizes well to new, unseen environments.
Inspired by research in psychology, we introduce a behavioral approach for visual navigation using topological maps. Our goal is to enable a robot to navigate from one location to another, relying only on its visual input and the topological map of t
Real world visual navigation requires robots to operate in unfamiliar, human-occupied dynamic environments. Navigation around humans is especially difficult because it requires anticipating their future motion, which can be quite challenging. We prop
Visual Indoor Navigation (VIN) task has drawn increasing attention from the data-driven machine learning communities especially with the recently reported success from learning-based methods. Due to the innate complexity of this task, researchers hav
Reflecting on the last few years, the biggest breakthroughs in deep reinforcement learning (RL) have been in the discrete action domain. Robotic manipulation, however, is inherently a continuous control environment, but these continuous control reinf
In order to engage in complex social interaction, humans learn at a young age to infer what others see and cannot see from a different point-of-view, and learn to predict others plans and behaviors. These abilities have been mostly lacking in robots,