ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossover from the Ultracold to the Quasiclassical Regime in State-Selected Photodissociation

131   0   0.0 ( 0 )
 نشر من قبل Tanya Zelevinsky
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Processes that break molecular bonds are typically observed with molecules occupying a mixture of quantum states and successfully described with quasiclassical models, while a few studies have explored the distinctly quantum mechanical low-energy regime. Here we use photodissociation of diatomic strontium molecules to demonstrate the crossover from the ultracold, quantum regime where the photofragment angular distributions strongly depend on the kinetic energy, to the energy-independent quasiclassical regime. Using time-of-flight velocity map imaging for photodissociation channels with millikelvin reaction barriers, we explore photofragment energies in the 0.1-300 mK range experimentally and up to 3 K theoretically, and discuss the energy scale at which the crossover occurs. Furthermore, we find that the effects of quantum statistics can unexpectedly persist to high photodissociation energies.

قيم البحث

اقرأ أيضاً

At ultralow energies, atoms and molecules undergo collisions and reactions that are best described in terms of quantum mechanical wave functions. In contrast, at higher energies these processes can be understood quasiclassically. Here, we investigate the crossover from the quantum mechanical to the quasiclassical regime both experimentally and theoretically for photodissociation of ultracold diatomic strontium molecules. This basic reaction is carried out with a full control of quantum states for the molecules and their photofragments. The photofragment angular distributions are imaged, and calculated using a quantum mechanical model as well as the WKB and a semiclassical approximation that are explicitly compared across a range of photofragment energies. The reaction process is shown to converge to its high-energy (axial recoil) limit when the energy exceeds the height of any reaction barriers. This phenomenon is quantitatively investigated for two-channel photodissociation using intuitive parameters for the channel amplitude and phase. While the axial recoil limit is generally found to be well described by a commonly used quasiclassical model, we find that when the photofragments are identical particles, their bosonic or fermionic quantum statistics can cause this model to fail, requiring a quantum mechanical treatment even at high energies.
Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic chemical reaction at ultracold temperatures allows its qu antum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent qualitative agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.
Quantum control of reactive systems has enabled microscopic probes of underlying interaction potentials, the opening of novel reaction pathways, and the alteration of reaction rates using quantum statistics. However, extending such control to the qua ntum states of reaction outcomes remains challenging. In this work, we realize this goal through the nuclear spin degree of freedom, a result which relies on the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules, we find that the system retains a near-perfect memory of the reactants nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a bimolecular reaction with quantum state resolution. The techniques demonstrated here open up the possibilities to study quantum interference between reaction pathways, quantum entanglement between reaction products, and ultracold reaction dynamics at the state-to-state level.
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, thes e approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunneling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
We use (1+1$$) resonance-enhanced multiphoton photodissociation (REMPD) to detect the population in individual rovibronic states of trapped HfF$^+$ with a single-shot absolute efficiency of 18%, which is over 200 times better than that obtained with fluorescence detection. The first photon excites a specific rotational level to an intermediate vibronic band at 35,000-36,500 cm$^{-1}$, and the second photon, at 37,594 cm$^{-1}$ (266 nm), dissociates HfF$^+$ into Hf$^+$ and F. Mass-resolved time-of-flight ion detection then yields the number of state-selectively dissociated ions. Using this method, we observe rotational-state heating of trapped HfF$^+$ ions from collisions with neutral Ar atoms. Furthermore, we measure the lifetime of the $^3Delta_1$ $v=0,, J=1$ state to be 2.1(2) s. This state will be used for a search for a permanent electric dipole moment of the electron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا