ﻻ يوجد ملخص باللغة العربية
Higher-order transitions can occur in the ultrastrong-coupling regime of circuit QED through virtual processes governed by the counter-rotating interactions. We propose a feasible way to probe higher-order transitions through the scattering of propagating microwave photons incident on the hybrid qubit-cavity system. The lineshapes in the scattering spectra can indicate the coherent interaction between the qubits and the cavity, and the higher-order transitions can be identified in the population spectra. We further find that if the coupling strengths between the two qubits and the cavity are tuned to be asymmetric, the dark antisymmetric state with the Fano-lineshape can also be detected from the variations in the scattering spectra.
We study a circuit QED setup where multiple superconducting qubits are ultrastrongly coupled to a single radio-frequency resonator. In this extreme parameter regime of cavity QED the dynamics of the electromagnetic mode is very slow compared to all o
We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of the quantum Rabi model allow us to build an effecti
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded SQUID. The anharmonic spectrum of the qubit-resonator sy
Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to
The interaction between an atom and the electromagnetic field inside a cavity has played a crucial role in the historical development of our understanding of light-matter interaction and is a central part of various quantum technologies, such as lase