ﻻ يوجد ملخص باللغة العربية
Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to microwave resonators, the time has come to consider the generation and characterization of propagating quantum microwaves. In this paper, we design a key ingredient that will prove essential in the general frame: a swtichable coupling between qubit(s) and transmission line(s) that can work in the ultrastrong coupling regime, where the coupling strength approaches the qubit transition frequency. We propose several setups where two or more loops of Josephson junctions are directly connected to a closed (cavity) or open transmission line. We demonstrate that the circuit induces a coupling that can be modulated in strength and type. Given recent studies showing the accessibility to the ultrastrong regime, we expect our ideas to have an immediate impact in ongoing experiments.
We study a circuit QED setup where multiple superconducting qubits are ultrastrongly coupled to a single radio-frequency resonator. In this extreme parameter regime of cavity QED the dynamics of the electromagnetic mode is very slow compared to all o
Superconducting qubits behave as artificial two-level atoms and are used to investigate fundamental quantum phenomena. In this context, the study of multi-photon excitations occupies a central role. Moreover, coupling superconducting qubits to on-chi
We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of the quantum Rabi model allow us to build an effecti
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded SQUID. The anharmonic spectrum of the qubit-resonator sy
We propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realize both single- and multiphoton frequency-con